Matches in SemOpenAlex for { <https://semopenalex.org/work/W2275193110> ?p ?o ?g. }
- W2275193110 abstract "According to the thought divide and conquer that human perceives complicated things from multi-side and multi-view and balances the final decision, this paper puts forward the multi-sided multi-granular neural network ensemble optimization method based on feature selection, which divides attribute granularity of dataset from multi-side, and structures multi-granular individual neural networks using different attribute granularity and the corresponding subsets. In this way, we can gain multi-granular individual neural networks with greater diversity, and get better performance of neural network ensemble(NNE). Firstly, use feature selection method to calculate the importance of each attribute, according to the average weight to choose some attributes whose average weight is greater than a certain threshold, to form an attribute granularity and the corresponding sample subset, thus to construct an individual neural network. If samples are not properly identified, this attribute granularity is weak for the generalization ability of the sample. Secondly, again calculate the importance of the attributes of samples not properly identified, choose the attributes that can generalize the corresponding samples better, and add to the last attribute granularity to form a new attribute granularity, and at the same time random choose two-thirds of sample subset to construct an individual neural network. In turn, one can get a series of attribute granularities and the corresponding sample subsets and a series of multi-granular individual neural networks. These attribute granularities and the corresponding sample subsets constructed from multi-side and multi-view with greater diversity can construct multi-granular individual neural networks with greater diversity. This method not only reduces the dimension of the dataset, but also makes the attribute granularity to identify the corresponding sample as large as possible. Finally, by calculating the diversity of each of the two individual neural networks, optimal selects some individual neural networks with greater diversity to ensemble. The simulation experiments show that our proposed method here, multi-side multi-granular neural network ensemble optimization method, can gain better performance." @default.
- W2275193110 created "2016-06-24" @default.
- W2275193110 creator A5012528047 @default.
- W2275193110 creator A5038126522 @default.
- W2275193110 creator A5082274996 @default.
- W2275193110 date "2016-07-01" @default.
- W2275193110 modified "2023-09-24" @default.
- W2275193110 title "Research of multi-sided multi-granular neural network ensemble optimization method" @default.
- W2275193110 cites W1416232810 @default.
- W2275193110 cites W1509092951 @default.
- W2275193110 cites W1808644423 @default.
- W2275193110 cites W1988790447 @default.
- W2275193110 cites W2039759190 @default.
- W2275193110 cites W2082262262 @default.
- W2275193110 cites W2086479834 @default.
- W2275193110 cites W2089644544 @default.
- W2275193110 cites W2092711167 @default.
- W2275193110 cites W2100128988 @default.
- W2275193110 cites W2135293965 @default.
- W2275193110 cites W2137983211 @default.
- W2275193110 cites W2141302518 @default.
- W2275193110 cites W2152761983 @default.
- W2275193110 cites W2167917621 @default.
- W2275193110 cites W2169611088 @default.
- W2275193110 cites W2185939569 @default.
- W2275193110 cites W4206765718 @default.
- W2275193110 doi "https://doi.org/10.1016/j.neucom.2016.02.013" @default.
- W2275193110 hasPublicationYear "2016" @default.
- W2275193110 type Work @default.
- W2275193110 sameAs 2275193110 @default.
- W2275193110 citedByCount "2" @default.
- W2275193110 countsByYear W22751931102016 @default.
- W2275193110 countsByYear W22751931102021 @default.
- W2275193110 crossrefType "journal-article" @default.
- W2275193110 hasAuthorship W2275193110A5012528047 @default.
- W2275193110 hasAuthorship W2275193110A5038126522 @default.
- W2275193110 hasAuthorship W2275193110A5082274996 @default.
- W2275193110 hasConcept C111012933 @default.
- W2275193110 hasConcept C111919701 @default.
- W2275193110 hasConcept C119857082 @default.
- W2275193110 hasConcept C124101348 @default.
- W2275193110 hasConcept C134306372 @default.
- W2275193110 hasConcept C138885662 @default.
- W2275193110 hasConcept C153180895 @default.
- W2275193110 hasConcept C154945302 @default.
- W2275193110 hasConcept C17209119 @default.
- W2275193110 hasConcept C177148314 @default.
- W2275193110 hasConcept C177774035 @default.
- W2275193110 hasConcept C185592680 @default.
- W2275193110 hasConcept C198531522 @default.
- W2275193110 hasConcept C199360897 @default.
- W2275193110 hasConcept C2776401178 @default.
- W2275193110 hasConcept C2780801425 @default.
- W2275193110 hasConcept C33923547 @default.
- W2275193110 hasConcept C41008148 @default.
- W2275193110 hasConcept C41895202 @default.
- W2275193110 hasConcept C43617362 @default.
- W2275193110 hasConcept C50644808 @default.
- W2275193110 hasConcept C81917197 @default.
- W2275193110 hasConceptScore W2275193110C111012933 @default.
- W2275193110 hasConceptScore W2275193110C111919701 @default.
- W2275193110 hasConceptScore W2275193110C119857082 @default.
- W2275193110 hasConceptScore W2275193110C124101348 @default.
- W2275193110 hasConceptScore W2275193110C134306372 @default.
- W2275193110 hasConceptScore W2275193110C138885662 @default.
- W2275193110 hasConceptScore W2275193110C153180895 @default.
- W2275193110 hasConceptScore W2275193110C154945302 @default.
- W2275193110 hasConceptScore W2275193110C17209119 @default.
- W2275193110 hasConceptScore W2275193110C177148314 @default.
- W2275193110 hasConceptScore W2275193110C177774035 @default.
- W2275193110 hasConceptScore W2275193110C185592680 @default.
- W2275193110 hasConceptScore W2275193110C198531522 @default.
- W2275193110 hasConceptScore W2275193110C199360897 @default.
- W2275193110 hasConceptScore W2275193110C2776401178 @default.
- W2275193110 hasConceptScore W2275193110C2780801425 @default.
- W2275193110 hasConceptScore W2275193110C33923547 @default.
- W2275193110 hasConceptScore W2275193110C41008148 @default.
- W2275193110 hasConceptScore W2275193110C41895202 @default.
- W2275193110 hasConceptScore W2275193110C43617362 @default.
- W2275193110 hasConceptScore W2275193110C50644808 @default.
- W2275193110 hasConceptScore W2275193110C81917197 @default.
- W2275193110 hasFunder F4320321001 @default.
- W2275193110 hasLocation W22751931101 @default.
- W2275193110 hasOpenAccess W2275193110 @default.
- W2275193110 hasPrimaryLocation W22751931101 @default.
- W2275193110 hasRelatedWork W1190577018 @default.
- W2275193110 hasRelatedWork W1598551017 @default.
- W2275193110 hasRelatedWork W1978832145 @default.
- W2275193110 hasRelatedWork W2131934773 @default.
- W2275193110 hasRelatedWork W2248894076 @default.
- W2275193110 hasRelatedWork W2518394920 @default.
- W2275193110 hasRelatedWork W2899570649 @default.
- W2275193110 hasRelatedWork W2900980272 @default.
- W2275193110 hasRelatedWork W2920444015 @default.
- W2275193110 hasRelatedWork W2941688763 @default.
- W2275193110 hasRelatedWork W2948817996 @default.
- W2275193110 hasRelatedWork W2955022974 @default.
- W2275193110 hasRelatedWork W2964368963 @default.
- W2275193110 hasRelatedWork W2978780922 @default.
- W2275193110 hasRelatedWork W3033682570 @default.