Matches in SemOpenAlex for { <https://semopenalex.org/work/W2275263896> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2275263896 endingPage "241" @default.
- W2275263896 startingPage "199" @default.
- W2275263896 abstract "Reported properties of network configurations of memristors, as presented in Chap. 7, showed that composite memristive systems significantly improve the efficiency of logic operations via massive analog parallelism. The sparse nature of such network-based computations, though, resembles certain operational features and computing capabilities of Cellular Automata (CA), a powerful parallel computational model which leads to scalable hardware (HW) architectures with very high device densities. When CA-based models are implemented in HW, the circuit design reduces to the design of a single cell and the overall layout results regular with exclusively local inter-connections. Moreover, the models are executed fast by exploiting the parallelism of the CA structure. This chapter focuses on a circuit-level CA-inspired approach for in-memory computing schemes using memristors and composite memristive components. A generalized CA cell circuit design methodology is described, which facilitates the implementation of CA-based computing algorithms, exploiting the threshold-type resistance switching behavior of memristors and of multi-state memristive components. Several CA cell example structures are designed and employed in array-like circuit geometries, where computations regarding classic NP-hard problems of various areas of artificial intelligence (AI) take place. The main contribution of this methodology consists in the combination of unconventional computing with CA and the unique circuit properties of memristors, aiming to set off parallel computing capabilities and improve CA-based hardware accelerators for NP-hard AI problems." @default.
- W2275263896 created "2016-06-24" @default.
- W2275263896 creator A5008924272 @default.
- W2275263896 creator A5030851089 @default.
- W2275263896 date "2015-08-27" @default.
- W2275263896 modified "2023-09-25" @default.
- W2275263896 title "Memristive Computing for NP-Hard AI Problems" @default.
- W2275263896 cites W1488115238 @default.
- W2275263896 cites W1527618531 @default.
- W2275263896 cites W1564665474 @default.
- W2275263896 cites W1963610794 @default.
- W2275263896 cites W1966916592 @default.
- W2275263896 cites W1969469174 @default.
- W2275263896 cites W1970645895 @default.
- W2275263896 cites W1992042060 @default.
- W2275263896 cites W1996438821 @default.
- W2275263896 cites W2001759551 @default.
- W2275263896 cites W2013568176 @default.
- W2275263896 cites W2020971886 @default.
- W2275263896 cites W2026377239 @default.
- W2275263896 cites W2043005464 @default.
- W2275263896 cites W2048905935 @default.
- W2275263896 cites W2049256850 @default.
- W2275263896 cites W2060322444 @default.
- W2275263896 cites W2065040618 @default.
- W2275263896 cites W2067926714 @default.
- W2275263896 cites W2072992994 @default.
- W2275263896 cites W2079503009 @default.
- W2275263896 cites W2082756313 @default.
- W2275263896 cites W2083078360 @default.
- W2275263896 cites W2090096388 @default.
- W2275263896 cites W2093387174 @default.
- W2275263896 cites W2094996340 @default.
- W2275263896 cites W2137249916 @default.
- W2275263896 cites W2141071915 @default.
- W2275263896 cites W2144277812 @default.
- W2275263896 cites W2151942970 @default.
- W2275263896 cites W2152495216 @default.
- W2275263896 cites W2156051492 @default.
- W2275263896 cites W2319918837 @default.
- W2275263896 cites W2611831635 @default.
- W2275263896 cites W3021750181 @default.
- W2275263896 cites W4236127247 @default.
- W2275263896 cites W4302554779 @default.
- W2275263896 cites W90213227 @default.
- W2275263896 doi "https://doi.org/10.1007/978-3-319-22647-7_8" @default.
- W2275263896 hasPublicationYear "2015" @default.
- W2275263896 type Work @default.
- W2275263896 sameAs 2275263896 @default.
- W2275263896 citedByCount "0" @default.
- W2275263896 crossrefType "book-chapter" @default.
- W2275263896 hasAuthorship W2275263896A5008924272 @default.
- W2275263896 hasAuthorship W2275263896A5030851089 @default.
- W2275263896 hasConcept C41008148 @default.
- W2275263896 hasConceptScore W2275263896C41008148 @default.
- W2275263896 hasLocation W22752638961 @default.
- W2275263896 hasOpenAccess W2275263896 @default.
- W2275263896 hasPrimaryLocation W22752638961 @default.
- W2275263896 hasRelatedWork W2093578348 @default.
- W2275263896 hasRelatedWork W2350741829 @default.
- W2275263896 hasRelatedWork W2358668433 @default.
- W2275263896 hasRelatedWork W2376932109 @default.
- W2275263896 hasRelatedWork W2382290278 @default.
- W2275263896 hasRelatedWork W2390279801 @default.
- W2275263896 hasRelatedWork W2748952813 @default.
- W2275263896 hasRelatedWork W2766271392 @default.
- W2275263896 hasRelatedWork W2899084033 @default.
- W2275263896 hasRelatedWork W3004735627 @default.
- W2275263896 isParatext "false" @default.
- W2275263896 isRetracted "false" @default.
- W2275263896 magId "2275263896" @default.
- W2275263896 workType "book-chapter" @default.