Matches in SemOpenAlex for { <https://semopenalex.org/work/W2275332693> ?p ?o ?g. }
- W2275332693 endingPage "155" @default.
- W2275332693 startingPage "155" @default.
- W2275332693 abstract "The accurate extraction and mapping of built-up areas play an important role in many social, economic, and environmental studies. In this paper, we propose a novel approach for built-up area detection from high spatial resolution remote sensing images, using a block-based multi-scale feature representation framework. First, an image is divided into small blocks, in which the spectral, textural, and structural features are extracted and represented using a multi-scale framework; a set of refined Harris corner points is then used to select blocks as training samples; finally, a built-up index image is obtained by minimizing the normalized spectral, textural, and structural distances to the training samples, and a built-up area map is obtained by thresholding the index image. Experiments confirm that the proposed approach is effective for high-resolution optical and synthetic aperture radar images, with different scenes and different spatial resolutions." @default.
- W2275332693 created "2016-06-24" @default.
- W2275332693 creator A5052441498 @default.
- W2275332693 creator A5055349294 @default.
- W2275332693 creator A5058240242 @default.
- W2275332693 creator A5070114140 @default.
- W2275332693 date "2016-02-18" @default.
- W2275332693 modified "2023-09-24" @default.
- W2275332693 title "Representation of Block-Based Image Features in a Multi-Scale Framework for Built-Up Area Detection" @default.
- W2275332693 cites W1213971010 @default.
- W2275332693 cites W1980871951 @default.
- W2275332693 cites W1983186335 @default.
- W2275332693 cites W1984792953 @default.
- W2275332693 cites W1999697646 @default.
- W2275332693 cites W2016943428 @default.
- W2275332693 cites W2022841949 @default.
- W2275332693 cites W2026163023 @default.
- W2275332693 cites W2027091505 @default.
- W2275332693 cites W2038359773 @default.
- W2275332693 cites W2044609898 @default.
- W2275332693 cites W2045281715 @default.
- W2275332693 cites W2073189420 @default.
- W2275332693 cites W2075574309 @default.
- W2275332693 cites W2087553096 @default.
- W2275332693 cites W2089702680 @default.
- W2275332693 cites W2091436265 @default.
- W2275332693 cites W2099793626 @default.
- W2275332693 cites W2106002835 @default.
- W2275332693 cites W2107640820 @default.
- W2275332693 cites W2113199901 @default.
- W2275332693 cites W2123398200 @default.
- W2275332693 cites W2131438174 @default.
- W2275332693 cites W2141371127 @default.
- W2275332693 cites W2151103935 @default.
- W2275332693 cites W2154028886 @default.
- W2275332693 cites W2157284958 @default.
- W2275332693 cites W2159588176 @default.
- W2275332693 cites W2163352848 @default.
- W2275332693 cites W2172120354 @default.
- W2275332693 cites W2181914484 @default.
- W2275332693 cites W2315473094 @default.
- W2275332693 cites W4250620600 @default.
- W2275332693 doi "https://doi.org/10.3390/rs8020155" @default.
- W2275332693 hasPublicationYear "2016" @default.
- W2275332693 type Work @default.
- W2275332693 sameAs 2275332693 @default.
- W2275332693 citedByCount "14" @default.
- W2275332693 countsByYear W22753326932017 @default.
- W2275332693 countsByYear W22753326932018 @default.
- W2275332693 countsByYear W22753326932019 @default.
- W2275332693 countsByYear W22753326932020 @default.
- W2275332693 countsByYear W22753326932023 @default.
- W2275332693 crossrefType "journal-article" @default.
- W2275332693 hasAuthorship W2275332693A5052441498 @default.
- W2275332693 hasAuthorship W2275332693A5055349294 @default.
- W2275332693 hasAuthorship W2275332693A5058240242 @default.
- W2275332693 hasAuthorship W2275332693A5070114140 @default.
- W2275332693 hasBestOaLocation W22753326931 @default.
- W2275332693 hasConcept C115961682 @default.
- W2275332693 hasConcept C153180895 @default.
- W2275332693 hasConcept C154945302 @default.
- W2275332693 hasConcept C177264268 @default.
- W2275332693 hasConcept C17744445 @default.
- W2275332693 hasConcept C191178318 @default.
- W2275332693 hasConcept C199360897 @default.
- W2275332693 hasConcept C199539241 @default.
- W2275332693 hasConcept C205649164 @default.
- W2275332693 hasConcept C2524010 @default.
- W2275332693 hasConcept C2776359362 @default.
- W2275332693 hasConcept C2777210771 @default.
- W2275332693 hasConcept C2778755073 @default.
- W2275332693 hasConcept C31972630 @default.
- W2275332693 hasConcept C33923547 @default.
- W2275332693 hasConcept C41008148 @default.
- W2275332693 hasConcept C58640448 @default.
- W2275332693 hasConcept C62649853 @default.
- W2275332693 hasConcept C87360688 @default.
- W2275332693 hasConcept C94625758 @default.
- W2275332693 hasConceptScore W2275332693C115961682 @default.
- W2275332693 hasConceptScore W2275332693C153180895 @default.
- W2275332693 hasConceptScore W2275332693C154945302 @default.
- W2275332693 hasConceptScore W2275332693C177264268 @default.
- W2275332693 hasConceptScore W2275332693C17744445 @default.
- W2275332693 hasConceptScore W2275332693C191178318 @default.
- W2275332693 hasConceptScore W2275332693C199360897 @default.
- W2275332693 hasConceptScore W2275332693C199539241 @default.
- W2275332693 hasConceptScore W2275332693C205649164 @default.
- W2275332693 hasConceptScore W2275332693C2524010 @default.
- W2275332693 hasConceptScore W2275332693C2776359362 @default.
- W2275332693 hasConceptScore W2275332693C2777210771 @default.
- W2275332693 hasConceptScore W2275332693C2778755073 @default.
- W2275332693 hasConceptScore W2275332693C31972630 @default.
- W2275332693 hasConceptScore W2275332693C33923547 @default.
- W2275332693 hasConceptScore W2275332693C41008148 @default.
- W2275332693 hasConceptScore W2275332693C58640448 @default.
- W2275332693 hasConceptScore W2275332693C62649853 @default.
- W2275332693 hasConceptScore W2275332693C87360688 @default.
- W2275332693 hasConceptScore W2275332693C94625758 @default.