Matches in SemOpenAlex for { <https://semopenalex.org/work/W2275469673> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2275469673 endingPage "515" @default.
- W2275469673 startingPage "508" @default.
- W2275469673 abstract "AbstractIn this study, a novel hybrid evolutionary algorithm is proposed to improve the regression accuracy of support vector regression (SVR) based on the Particle Swarm Optimization (PSO) and Simulated Annealing (SA) algorithms, called SVR–PSO–SA. This optimization mechanism combined PSO with SA to simultaneously optimize the type of kernel function and the kernel parameter setting of SVR. It is troublesome to escape from the local optima for multi–objective optimization. To avoid premature convergence of PSO, this paper present a new hybrid evolutionary algorithm based on the idea that PSO ensures fast convergence, while SA brings the search out of local optima because of its strong local–search ability. The proposed the hybrid evolutionary algorithm was applied to optimize all parameter setting of SVR for the performance of SVR. The SVR–PSO–SA model is tested at daily rainfall forecasting in Guangxi, China. The results showed that the new SVR–PSO–SA model outperforms the traditional SVR models. Specifically, the new SVR–PSO–SA model can successfully identify the optimal type of kernel function and all the optimal values of the parameters of SVR with the lowest prediction error values in rainfall forecasting.KeywordsParticle Swarm OptimizationSupport Vector RegressionMean Absolute Percentage ErrorNormalize Mean Square ErrorSupport Vector Regression ModelThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves." @default.
- W2275469673 created "2016-06-24" @default.
- W2275469673 creator A5008760134 @default.
- W2275469673 creator A5050729402 @default.
- W2275469673 date "2011-01-01" @default.
- W2275469673 modified "2023-10-16" @default.
- W2275469673 title "Daily Rainfall Prediction with SVR Using a Novel Hybrid PSO-SA Algorithms" @default.
- W2275469673 cites W11883665 @default.
- W2275469673 cites W1535006492 @default.
- W2275469673 cites W1970092360 @default.
- W2275469673 cites W2024060531 @default.
- W2275469673 cites W2059115408 @default.
- W2275469673 cites W2168156818 @default.
- W2275469673 doi "https://doi.org/10.1007/978-3-642-25002-6_71" @default.
- W2275469673 hasPublicationYear "2011" @default.
- W2275469673 type Work @default.
- W2275469673 sameAs 2275469673 @default.
- W2275469673 citedByCount "3" @default.
- W2275469673 countsByYear W22754696732015 @default.
- W2275469673 countsByYear W22754696732019 @default.
- W2275469673 countsByYear W22754696732022 @default.
- W2275469673 crossrefType "book-chapter" @default.
- W2275469673 hasAuthorship W2275469673A5008760134 @default.
- W2275469673 hasAuthorship W2275469673A5050729402 @default.
- W2275469673 hasConcept C11413529 @default.
- W2275469673 hasConcept C114614502 @default.
- W2275469673 hasConcept C119857082 @default.
- W2275469673 hasConcept C12267149 @default.
- W2275469673 hasConcept C126255220 @default.
- W2275469673 hasConcept C126980161 @default.
- W2275469673 hasConcept C141934464 @default.
- W2275469673 hasConcept C154945302 @default.
- W2275469673 hasConcept C159149176 @default.
- W2275469673 hasConcept C162324750 @default.
- W2275469673 hasConcept C2777303404 @default.
- W2275469673 hasConcept C33923547 @default.
- W2275469673 hasConcept C41008148 @default.
- W2275469673 hasConcept C50522688 @default.
- W2275469673 hasConcept C74193536 @default.
- W2275469673 hasConcept C85617194 @default.
- W2275469673 hasConceptScore W2275469673C11413529 @default.
- W2275469673 hasConceptScore W2275469673C114614502 @default.
- W2275469673 hasConceptScore W2275469673C119857082 @default.
- W2275469673 hasConceptScore W2275469673C12267149 @default.
- W2275469673 hasConceptScore W2275469673C126255220 @default.
- W2275469673 hasConceptScore W2275469673C126980161 @default.
- W2275469673 hasConceptScore W2275469673C141934464 @default.
- W2275469673 hasConceptScore W2275469673C154945302 @default.
- W2275469673 hasConceptScore W2275469673C159149176 @default.
- W2275469673 hasConceptScore W2275469673C162324750 @default.
- W2275469673 hasConceptScore W2275469673C2777303404 @default.
- W2275469673 hasConceptScore W2275469673C33923547 @default.
- W2275469673 hasConceptScore W2275469673C41008148 @default.
- W2275469673 hasConceptScore W2275469673C50522688 @default.
- W2275469673 hasConceptScore W2275469673C74193536 @default.
- W2275469673 hasConceptScore W2275469673C85617194 @default.
- W2275469673 hasLocation W22754696731 @default.
- W2275469673 hasOpenAccess W2275469673 @default.
- W2275469673 hasPrimaryLocation W22754696731 @default.
- W2275469673 hasRelatedWork W2048782181 @default.
- W2275469673 hasRelatedWork W2052180697 @default.
- W2275469673 hasRelatedWork W2093237464 @default.
- W2275469673 hasRelatedWork W2099585286 @default.
- W2275469673 hasRelatedWork W2143133677 @default.
- W2275469673 hasRelatedWork W2156050405 @default.
- W2275469673 hasRelatedWork W2360549619 @default.
- W2275469673 hasRelatedWork W2364877963 @default.
- W2275469673 hasRelatedWork W2586739852 @default.
- W2275469673 hasRelatedWork W3097416438 @default.
- W2275469673 isParatext "false" @default.
- W2275469673 isRetracted "false" @default.
- W2275469673 magId "2275469673" @default.
- W2275469673 workType "book-chapter" @default.