Matches in SemOpenAlex for { <https://semopenalex.org/work/W2275496681> ?p ?o ?g. }
- W2275496681 abstract "This dissertation is focused on the assessment of glucose variability (GV) in the treatment of the pathology of diabetes mellitus. GV is a risk factor for the development of diabetes complications, and its assessment combined with the evaluation of glycated hemoglobin levels is believed to be useful to characterize the functioning of glucose metabolism. Given the importance of GV in diabetes, a number of indicators to measure it from the retrospective analysis of sparse self-monitoring of blood glucose (SMBG) or continuous glucose monitoring (CGM) recordings have been proposed in the literature, but several issues are still open. For instance, some GV indicators have been developed specifically from SMBG data, and their use on CGM time-series has not been validated yet. Moreover, the availability of a large number of metrics to quantify GV gives rise to problems in terms of redundant conveyed information, and a compact way to extensively characterize GV would be desirable. Finally, the exploitation of CGM signals and GV to classify the metabolic condition of normal and diabetic subjects is a relatively unexplored problem that could deserve an investigation. These three topics are the object of this dissertation, which is specifically made up of six chapters whose content is briefly outlined below.Chapter 1 will describe the etiology of the different types of diabetes, discuss the development of diabetes complications, and introduce the technologies used to monitor blood glucose levels and the strategies exploited to manage the treatment of type 1 (T1DM) and type 2 (T2DM) diabetes mellitus.Chapter 2 will focus specifically on GV and its quantification, and, after highlighting the existing open issues, will precisely state the aims of the thesis.Chapter 3 will consider the problem of adapting some GV indicators originally developed and validated from SMBG, to the use with CGM signals. In particular, we will specifically look at low blood glucose index (LBGI) and high blood glucose index (HBGI), popular metrics that allow to provide a rapid classification of the quality of glucose control in diabetic subjects, and will provide alternate versions of these indicators adapted to the characteristics of CGMs by modeling the relationship between LBGI/HBGI values obtained from SMBG and CGM recordings. A dataset of 28 T1DM subjects monitored with both SMBG and CGM devices will be used to tune and assess the proposed methodology.Chapter 4 will address the issue of redundant information conveyed by the available GV indices by using the sparse principal component analysis (SPCA) technique as a tool to provide a parsimonious but still comprehensive characterization of GV in both T1DM and T2DM. Specifically, we will consider 25 GV indicators evaluated on CGM profiles acquired from 33 T1DM and 13 T2DM subjects as initial pool of variables. SPCA will be applied to this set of metrics and will be shown to be able to select a small subset of up to 10 indices that can save more than 60% of the original variance in both applications. The subset of metrics provided by SPCA can be used to parsimoniously describe GV in diabetes.Chapter 5 will be devoted to the assessment of the possibility of using the outputs from SPCA to build GV-based classifiers of the metabolic condition of normal and diabetic subjects. In particular, by resorting to a dataset of 55 T1DM subjects, 34 normal subjects at high risk of developing T2DM, 39 impaired glucose tolerance subjects, and 29 subjects with T2DM diagnosed, we will show that support vector machines are able to successfully classify the quality of glycemic control and the metabolic condition of disordered subjects, allowing to achieve an accuracy of classification always greater than 70%. The investigation will be performed using both the whole initial pool of 25 indicators and the parsimonious set selected by SPCA as features to design the classifiers; the fact that similar results were obtained in the two scenarios strengthens the speculation that the compact description of GV provided by SPCA is effectively comprehensive for characterizing the subjects' metabolic condition.Chapter 6 will close this dissertation, with a discussion on possible future developments of the presented investigations." @default.
- W2275496681 created "2016-06-24" @default.
- W2275496681 creator A5046374727 @default.
- W2275496681 date "2015-02-02" @default.
- W2275496681 modified "2023-09-27" @default.
- W2275496681 title "Glucose variability assessment in diabetes mellitus monitoring and control" @default.
- W2275496681 cites W111349207 @default.
- W2275496681 cites W12039364 @default.
- W2275496681 cites W1441667604 @default.
- W2275496681 cites W1560724230 @default.
- W2275496681 cites W1602071881 @default.
- W2275496681 cites W1663973292 @default.
- W2275496681 cites W1966997176 @default.
- W2275496681 cites W1972871522 @default.
- W2275496681 cites W1973419629 @default.
- W2275496681 cites W1974297751 @default.
- W2275496681 cites W1975900269 @default.
- W2275496681 cites W1976351811 @default.
- W2275496681 cites W1978533569 @default.
- W2275496681 cites W1979354727 @default.
- W2275496681 cites W1984934982 @default.
- W2275496681 cites W1989208321 @default.
- W2275496681 cites W1993959942 @default.
- W2275496681 cites W1995972413 @default.
- W2275496681 cites W1997182203 @default.
- W2275496681 cites W1998561915 @default.
- W2275496681 cites W2001936293 @default.
- W2275496681 cites W2003047848 @default.
- W2275496681 cites W2007237723 @default.
- W2275496681 cites W2008908415 @default.
- W2275496681 cites W2010477419 @default.
- W2275496681 cites W2013529909 @default.
- W2275496681 cites W2014887370 @default.
- W2275496681 cites W2017294614 @default.
- W2275496681 cites W2017809267 @default.
- W2275496681 cites W2018951328 @default.
- W2275496681 cites W2020599247 @default.
- W2275496681 cites W2028300946 @default.
- W2275496681 cites W2031916024 @default.
- W2275496681 cites W2035642677 @default.
- W2275496681 cites W2039887637 @default.
- W2275496681 cites W2042045847 @default.
- W2275496681 cites W2046262211 @default.
- W2275496681 cites W2046393196 @default.
- W2275496681 cites W2056006655 @default.
- W2275496681 cites W2059158127 @default.
- W2275496681 cites W2060754466 @default.
- W2275496681 cites W2061177409 @default.
- W2275496681 cites W2062082544 @default.
- W2275496681 cites W2067407436 @default.
- W2275496681 cites W2071384927 @default.
- W2275496681 cites W2074414391 @default.
- W2275496681 cites W2077580396 @default.
- W2275496681 cites W2080465897 @default.
- W2275496681 cites W2083061846 @default.
- W2275496681 cites W2083218162 @default.
- W2275496681 cites W2087213817 @default.
- W2275496681 cites W2087220735 @default.
- W2275496681 cites W2093630751 @default.
- W2275496681 cites W2094754409 @default.
- W2275496681 cites W2098393285 @default.
- W2275496681 cites W2098647889 @default.
- W2275496681 cites W2100218801 @default.
- W2275496681 cites W2106375653 @default.
- W2275496681 cites W2106613355 @default.
- W2275496681 cites W2110264548 @default.
- W2275496681 cites W2111280386 @default.
- W2275496681 cites W2111306916 @default.
- W2275496681 cites W2116175903 @default.
- W2275496681 cites W2117343153 @default.
- W2275496681 cites W2124282046 @default.
- W2275496681 cites W2126946832 @default.
- W2275496681 cites W2130027785 @default.
- W2275496681 cites W2131878262 @default.
- W2275496681 cites W2138051406 @default.
- W2275496681 cites W2142433177 @default.
- W2275496681 cites W2142433802 @default.
- W2275496681 cites W2145562665 @default.
- W2275496681 cites W2147536426 @default.
- W2275496681 cites W2148723141 @default.
- W2275496681 cites W2155905771 @default.
- W2275496681 cites W2162012210 @default.
- W2275496681 cites W2162557622 @default.
- W2275496681 cites W2177333643 @default.
- W2275496681 cites W2180833524 @default.
- W2275496681 cites W2191369865 @default.
- W2275496681 cites W2327115945 @default.
- W2275496681 cites W2340948203 @default.
- W2275496681 cites W2394990953 @default.
- W2275496681 cites W2401734530 @default.
- W2275496681 cites W2520432709 @default.
- W2275496681 cites W2769264260 @default.
- W2275496681 hasPublicationYear "2015" @default.
- W2275496681 type Work @default.
- W2275496681 sameAs 2275496681 @default.
- W2275496681 citedByCount "0" @default.
- W2275496681 crossrefType "journal-article" @default.
- W2275496681 hasAuthorship W2275496681A5046374727 @default.
- W2275496681 hasConcept C134018914 @default.
- W2275496681 hasConcept C177713679 @default.