Matches in SemOpenAlex for { <https://semopenalex.org/work/W2275624892> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2275624892 endingPage "37" @default.
- W2275624892 startingPage "6" @default.
- W2275624892 abstract "This paper presents a Graph Inference retrieval model that integrates structured knowledge resources, statistical information retrieval methods and inference in a unified framework. Key components of the model are a graph-based representation of the corpus and retrieval driven by an inference mechanism achieved as a traversal over the graph. The model is proposed to tackle the semantic gap problem—the mismatch between the raw data and the way a human being interprets it. We break down the semantic gap problem into five core issues, each requiring a specific type of inference in order to be overcome. Our model and evaluation is applied to the medical domain because search within this domain is particularly challenging and, as we show, often requires inference. In addition, this domain features both structured knowledge resources as well as unstructured text. Our evaluation shows that inference can be effective, retrieving many new relevant documents that are not retrieved by state-of-the-art information retrieval models. We show that many retrieved documents were not pooled by keyword-based search methods, prompting us to perform additional relevance assessment on these new documents. A third of the newly retrieved documents judged were found to be relevant. Our analysis provides a thorough understanding of when and how to apply inference for retrieval, including a categorisation of queries according to the effect of inference. The inference mechanism promoted recall by retrieving new relevant documents not found by previous keyword-based approaches. In addition, it promoted precision by an effective reranking of documents. When inference is used, performance gains can generally be expected on hard queries. However, inference should not be applied universally: for easy, unambiguous queries and queries with few relevant documents, inference did adversely affect effectiveness. These conclusions reflect the fact that for retrieval as inference to be effective, a careful balancing act is involved. Finally, although the Graph Inference model is developed and applied to medical search, it is a general retrieval model applicable to other areas such as web search, where an emerging research trend is to utilise structured knowledge resources for more effective semantic search." @default.
- W2275624892 created "2016-06-24" @default.
- W2275624892 creator A5023210944 @default.
- W2275624892 creator A5065944502 @default.
- W2275624892 creator A5076031002 @default.
- W2275624892 creator A5086300145 @default.
- W2275624892 creator A5087733750 @default.
- W2275624892 date "2015-11-20" @default.
- W2275624892 modified "2023-10-09" @default.
- W2275624892 title "Information retrieval as semantic inference: a Graph Inference model applied to medical search" @default.
- W2275624892 cites W1594800253 @default.
- W2275624892 cites W170314826 @default.
- W2275624892 cites W1976525942 @default.
- W2275624892 cites W1980892230 @default.
- W2275624892 cites W1994680595 @default.
- W2275624892 cites W1997632490 @default.
- W2275624892 cites W2000411838 @default.
- W2275624892 cites W2013395294 @default.
- W2275624892 cites W2025356973 @default.
- W2275624892 cites W2031614194 @default.
- W2275624892 cites W2032472148 @default.
- W2275624892 cites W2038904947 @default.
- W2275624892 cites W2078875869 @default.
- W2275624892 cites W2084946528 @default.
- W2275624892 cites W2089683690 @default.
- W2275624892 cites W2099868020 @default.
- W2275624892 cites W2109993347 @default.
- W2275624892 cites W2132220874 @default.
- W2275624892 cites W2147844972 @default.
- W2275624892 cites W4236329806 @default.
- W2275624892 cites W4249191614 @default.
- W2275624892 cites W58594626 @default.
- W2275624892 doi "https://doi.org/10.1007/s10791-015-9268-9" @default.
- W2275624892 hasPublicationYear "2015" @default.
- W2275624892 type Work @default.
- W2275624892 sameAs 2275624892 @default.
- W2275624892 citedByCount "37" @default.
- W2275624892 countsByYear W22756248922016 @default.
- W2275624892 countsByYear W22756248922017 @default.
- W2275624892 countsByYear W22756248922018 @default.
- W2275624892 countsByYear W22756248922019 @default.
- W2275624892 countsByYear W22756248922020 @default.
- W2275624892 countsByYear W22756248922021 @default.
- W2275624892 countsByYear W22756248922022 @default.
- W2275624892 crossrefType "journal-article" @default.
- W2275624892 hasAuthorship W2275624892A5023210944 @default.
- W2275624892 hasAuthorship W2275624892A5065944502 @default.
- W2275624892 hasAuthorship W2275624892A5076031002 @default.
- W2275624892 hasAuthorship W2275624892A5086300145 @default.
- W2275624892 hasAuthorship W2275624892A5087733750 @default.
- W2275624892 hasBestOaLocation W22756248922 @default.
- W2275624892 hasConcept C119857082 @default.
- W2275624892 hasConcept C124101348 @default.
- W2275624892 hasConcept C132525143 @default.
- W2275624892 hasConcept C154945302 @default.
- W2275624892 hasConcept C158154518 @default.
- W2275624892 hasConcept C17744445 @default.
- W2275624892 hasConcept C199539241 @default.
- W2275624892 hasConcept C204321447 @default.
- W2275624892 hasConcept C23123220 @default.
- W2275624892 hasConcept C2776214188 @default.
- W2275624892 hasConcept C41008148 @default.
- W2275624892 hasConcept C80444323 @default.
- W2275624892 hasConcept C81669768 @default.
- W2275624892 hasConceptScore W2275624892C119857082 @default.
- W2275624892 hasConceptScore W2275624892C124101348 @default.
- W2275624892 hasConceptScore W2275624892C132525143 @default.
- W2275624892 hasConceptScore W2275624892C154945302 @default.
- W2275624892 hasConceptScore W2275624892C158154518 @default.
- W2275624892 hasConceptScore W2275624892C17744445 @default.
- W2275624892 hasConceptScore W2275624892C199539241 @default.
- W2275624892 hasConceptScore W2275624892C204321447 @default.
- W2275624892 hasConceptScore W2275624892C23123220 @default.
- W2275624892 hasConceptScore W2275624892C2776214188 @default.
- W2275624892 hasConceptScore W2275624892C41008148 @default.
- W2275624892 hasConceptScore W2275624892C80444323 @default.
- W2275624892 hasConceptScore W2275624892C81669768 @default.
- W2275624892 hasIssue "1-2" @default.
- W2275624892 hasLocation W22756248921 @default.
- W2275624892 hasLocation W22756248922 @default.
- W2275624892 hasOpenAccess W2275624892 @default.
- W2275624892 hasPrimaryLocation W22756248921 @default.
- W2275624892 hasRelatedWork W2001121861 @default.
- W2275624892 hasRelatedWork W2082107317 @default.
- W2275624892 hasRelatedWork W2087859840 @default.
- W2275624892 hasRelatedWork W2156296249 @default.
- W2275624892 hasRelatedWork W2897178939 @default.
- W2275624892 hasRelatedWork W40093513 @default.
- W2275624892 hasRelatedWork W4234923639 @default.
- W2275624892 hasRelatedWork W4312252109 @default.
- W2275624892 hasRelatedWork W772957555 @default.
- W2275624892 hasRelatedWork W83344948 @default.
- W2275624892 hasVolume "19" @default.
- W2275624892 isParatext "false" @default.
- W2275624892 isRetracted "false" @default.
- W2275624892 magId "2275624892" @default.
- W2275624892 workType "article" @default.