Matches in SemOpenAlex for { <https://semopenalex.org/work/W2275643889> ?p ?o ?g. }
- W2275643889 endingPage "13" @default.
- W2275643889 startingPage "1" @default.
- W2275643889 abstract "Energy and water are two interwoven elements of power generation systems. Because wind power is regarded as a promising renewable energy, how to increase its production and reduce energy and water costs has attracted many attentions. However, there is a lack of comprehension of the energy–water nexus in wind power generation systems. In this study, we developed a new energy–water nexus analysis framework for wind power generation systems, which includes both element and pathway nexus analyses. In element nexus analysis, energy used for water extraction and wastewater treatment and water consumed for electricity generation were investigated. The mutual interactions and control situations within the wind power generation system were also examined in pathway nexus analysis based on Network Environ Analysis (NEA). Taking a typical wind power generation system in China as the case, the element nexus analysis results show that water consumptions per unit of wind power generation are much lower than those of the other power generation systems. Energy consumption of the water system in the wind power generation system is 3.395 × 107 MJ, of which water extraction process constitutes 90.22%. In pathway nexus analysis, network utility analysis and network control analysis are performed to investigate the dominant sectors and pathways for energy–water circulation and the mutual relationships between pairwise components of the wind power generation system. The results of network utility analysis show that compartment of surface water and groundwater (WA) is beneficiary from waste treatment (WT), which implies that although extra energy is devoted to WT, the benefit of water recycling is larger than energy cost. The results of network control analysis indicate that on-grid power (PG) not only depends on direct wind resource input (WI) (with a dependence coefficient of 0.20), but also indirectly supported by major compartments of fossil fuel input (FU) (0.16), construction material input (CO) (0.14), and wind turbines manufactory (MA) (0.12). Compartments of WA and MA have large dependences on WT. Therefore, increasing wastewater and material treatment and recycling in the wind power generation system could reduce water and energy demand from the external environmental. Dissipation (DIS) mainly relies on FU (0.19), wind power generation (WP) (0.16) and CO (0.2), which should be the focus of dissipation reduction. The presented energy–water nexus analysis may shed light on synergistic management of wind power generation systems." @default.
- W2275643889 created "2016-06-24" @default.
- W2275643889 creator A5067483347 @default.
- W2275643889 creator A5078713348 @default.
- W2275643889 date "2016-05-01" @default.
- W2275643889 modified "2023-10-18" @default.
- W2275643889 title "Energy–water nexus of wind power generation systems" @default.
- W2275643889 cites W1966617985 @default.
- W2275643889 cites W1975807096 @default.
- W2275643889 cites W1978579711 @default.
- W2275643889 cites W2003538088 @default.
- W2275643889 cites W2004211008 @default.
- W2275643889 cites W2008247400 @default.
- W2275643889 cites W2011605891 @default.
- W2275643889 cites W2031212439 @default.
- W2275643889 cites W2033037657 @default.
- W2275643889 cites W2034728678 @default.
- W2275643889 cites W2040456696 @default.
- W2275643889 cites W2040933298 @default.
- W2275643889 cites W2050251662 @default.
- W2275643889 cites W2052618564 @default.
- W2275643889 cites W2058537245 @default.
- W2275643889 cites W2061051639 @default.
- W2275643889 cites W2062150670 @default.
- W2275643889 cites W2063387120 @default.
- W2275643889 cites W2065423602 @default.
- W2275643889 cites W2072190049 @default.
- W2275643889 cites W2073194730 @default.
- W2275643889 cites W2073240785 @default.
- W2275643889 cites W2073320991 @default.
- W2275643889 cites W2076995951 @default.
- W2275643889 cites W2079925566 @default.
- W2275643889 cites W2081192177 @default.
- W2275643889 cites W2081610731 @default.
- W2275643889 cites W2081966315 @default.
- W2275643889 cites W2083684009 @default.
- W2275643889 cites W2088185311 @default.
- W2275643889 cites W2091892692 @default.
- W2275643889 cites W2093771792 @default.
- W2275643889 cites W2101194032 @default.
- W2275643889 cites W2101841470 @default.
- W2275643889 cites W2111061615 @default.
- W2275643889 cites W2118620126 @default.
- W2275643889 cites W2120526077 @default.
- W2275643889 cites W2125706471 @default.
- W2275643889 cites W2130354631 @default.
- W2275643889 cites W2132812673 @default.
- W2275643889 cites W2142392753 @default.
- W2275643889 cites W2321517087 @default.
- W2275643889 cites W2331776348 @default.
- W2275643889 cites W2331849407 @default.
- W2275643889 cites W2332871977 @default.
- W2275643889 doi "https://doi.org/10.1016/j.apenergy.2016.02.010" @default.
- W2275643889 hasPublicationYear "2016" @default.
- W2275643889 type Work @default.
- W2275643889 sameAs 2275643889 @default.
- W2275643889 citedByCount "83" @default.
- W2275643889 countsByYear W22756438892016 @default.
- W2275643889 countsByYear W22756438892017 @default.
- W2275643889 countsByYear W22756438892018 @default.
- W2275643889 countsByYear W22756438892019 @default.
- W2275643889 countsByYear W22756438892020 @default.
- W2275643889 countsByYear W22756438892021 @default.
- W2275643889 countsByYear W22756438892022 @default.
- W2275643889 countsByYear W22756438892023 @default.
- W2275643889 crossrefType "journal-article" @default.
- W2275643889 hasAuthorship W2275643889A5067483347 @default.
- W2275643889 hasAuthorship W2275643889A5078713348 @default.
- W2275643889 hasConcept C113360713 @default.
- W2275643889 hasConcept C119599485 @default.
- W2275643889 hasConcept C121332964 @default.
- W2275643889 hasConcept C127413603 @default.
- W2275643889 hasConcept C148609458 @default.
- W2275643889 hasConcept C149635348 @default.
- W2275643889 hasConcept C163258240 @default.
- W2275643889 hasConcept C188573790 @default.
- W2275643889 hasConcept C39432304 @default.
- W2275643889 hasConcept C423512 @default.
- W2275643889 hasConcept C62520636 @default.
- W2275643889 hasConcept C78600449 @default.
- W2275643889 hasConcept C89227174 @default.
- W2275643889 hasConceptScore W2275643889C113360713 @default.
- W2275643889 hasConceptScore W2275643889C119599485 @default.
- W2275643889 hasConceptScore W2275643889C121332964 @default.
- W2275643889 hasConceptScore W2275643889C127413603 @default.
- W2275643889 hasConceptScore W2275643889C148609458 @default.
- W2275643889 hasConceptScore W2275643889C149635348 @default.
- W2275643889 hasConceptScore W2275643889C163258240 @default.
- W2275643889 hasConceptScore W2275643889C188573790 @default.
- W2275643889 hasConceptScore W2275643889C39432304 @default.
- W2275643889 hasConceptScore W2275643889C423512 @default.
- W2275643889 hasConceptScore W2275643889C62520636 @default.
- W2275643889 hasConceptScore W2275643889C78600449 @default.
- W2275643889 hasConceptScore W2275643889C89227174 @default.
- W2275643889 hasFunder F4320321001 @default.
- W2275643889 hasLocation W22756438891 @default.
- W2275643889 hasOpenAccess W2275643889 @default.
- W2275643889 hasPrimaryLocation W22756438891 @default.