Matches in SemOpenAlex for { <https://semopenalex.org/work/W2275676790> ?p ?o ?g. }
- W2275676790 endingPage "835" @default.
- W2275676790 startingPage "822" @default.
- W2275676790 abstract "The kernel estimator is known not to be adequate for estimating the density of a positive random variable X. The main reason is the well-known boundary bias problems that it suffers from, but also its poor behavior in the long right tail that such a density typically exhibits. A natural approach to this problem is to first estimate the density of the logarithm of X, and obtaining an estimate of the density of X using standard results on functions of random variables (“back-transformation”). Although intuitive, the basic application of this idea usually yields poor results, as was documented earlier in the literature. In this article, the main reason for this underachievement is identified, and an easy fix is suggested. It is demonstrated that combining the transformation with local-likelihood density estimation methods produces very good estimators of R+-supported densities, not only close to the boundary, but also in the right tail. The asymptotic properties of the proposed “local-likelihood transformation kernel density estimators” are derived for a generic transformation, not only for the logarithm, which allows one to consider other transformations as well. One of them, called the “probex” transformation, is given more focus. Finally, the excellent behavior of those estimators in practice is evidenced through a comprehensive simulation study and the analysis of several real datasets. A nice consequence of articulating the method around local-likelihood estimation is that the resulting density estimates are typically smooth and visually pleasant, without oversmoothing important features of the underlying density." @default.
- W2275676790 created "2016-06-24" @default.
- W2275676790 creator A5023759317 @default.
- W2275676790 creator A5037753859 @default.
- W2275676790 date "2018-06-06" @default.
- W2275676790 modified "2023-09-25" @default.
- W2275676790 title "Local-Likelihood Transformation Kernel Density Estimation for Positive Random Variables" @default.
- W2275676790 cites W1492095942 @default.
- W2275676790 cites W1549245336 @default.
- W2275676790 cites W1970465574 @default.
- W2275676790 cites W1971300064 @default.
- W2275676790 cites W1971987748 @default.
- W2275676790 cites W1978135292 @default.
- W2275676790 cites W1982806865 @default.
- W2275676790 cites W1984854447 @default.
- W2275676790 cites W1986035445 @default.
- W2275676790 cites W1990579871 @default.
- W2275676790 cites W1992354471 @default.
- W2275676790 cites W1994083140 @default.
- W2275676790 cites W1994609430 @default.
- W2275676790 cites W1995514448 @default.
- W2275676790 cites W1998378660 @default.
- W2275676790 cites W1998951954 @default.
- W2275676790 cites W2004945083 @default.
- W2275676790 cites W2007242302 @default.
- W2275676790 cites W2009705985 @default.
- W2275676790 cites W2019591111 @default.
- W2275676790 cites W2022348805 @default.
- W2275676790 cites W2023140731 @default.
- W2275676790 cites W2029898160 @default.
- W2275676790 cites W2035096362 @default.
- W2275676790 cites W2049909519 @default.
- W2275676790 cites W2051195364 @default.
- W2275676790 cites W2053201887 @default.
- W2275676790 cites W2055017467 @default.
- W2275676790 cites W2055599454 @default.
- W2275676790 cites W2058000970 @default.
- W2275676790 cites W2059197051 @default.
- W2275676790 cites W2077839439 @default.
- W2275676790 cites W2090914356 @default.
- W2275676790 cites W2091955409 @default.
- W2275676790 cites W2094964791 @default.
- W2275676790 cites W2107775361 @default.
- W2275676790 cites W2110829452 @default.
- W2275676790 cites W2120844127 @default.
- W2275676790 cites W2159450688 @default.
- W2275676790 cites W2166666687 @default.
- W2275676790 cites W2167758633 @default.
- W2275676790 cites W2172525224 @default.
- W2275676790 cites W2514056720 @default.
- W2275676790 cites W2796496967 @default.
- W2275676790 cites W3106508722 @default.
- W2275676790 cites W3121914440 @default.
- W2275676790 cites W3122452207 @default.
- W2275676790 cites W362815228 @default.
- W2275676790 cites W4205511125 @default.
- W2275676790 cites W4233014035 @default.
- W2275676790 cites W4238717354 @default.
- W2275676790 cites W4295134715 @default.
- W2275676790 doi "https://doi.org/10.1080/10618600.2018.1424636" @default.
- W2275676790 hasPublicationYear "2018" @default.
- W2275676790 type Work @default.
- W2275676790 sameAs 2275676790 @default.
- W2275676790 citedByCount "8" @default.
- W2275676790 countsByYear W22756767902020 @default.
- W2275676790 countsByYear W22756767902021 @default.
- W2275676790 countsByYear W22756767902023 @default.
- W2275676790 crossrefType "journal-article" @default.
- W2275676790 hasAuthorship W2275676790A5023759317 @default.
- W2275676790 hasAuthorship W2275676790A5037753859 @default.
- W2275676790 hasBestOaLocation W22756767902 @default.
- W2275676790 hasConcept C104317684 @default.
- W2275676790 hasConcept C105795698 @default.
- W2275676790 hasConcept C114614502 @default.
- W2275676790 hasConcept C122123141 @default.
- W2275676790 hasConcept C122280245 @default.
- W2275676790 hasConcept C12267149 @default.
- W2275676790 hasConcept C134306372 @default.
- W2275676790 hasConcept C154945302 @default.
- W2275676790 hasConcept C185429906 @default.
- W2275676790 hasConcept C185592680 @default.
- W2275676790 hasConcept C189508267 @default.
- W2275676790 hasConcept C195699287 @default.
- W2275676790 hasConcept C204241405 @default.
- W2275676790 hasConcept C28826006 @default.
- W2275676790 hasConcept C33923547 @default.
- W2275676790 hasConcept C39927690 @default.
- W2275676790 hasConcept C41008148 @default.
- W2275676790 hasConcept C55493867 @default.
- W2275676790 hasConcept C62354387 @default.
- W2275676790 hasConcept C71134354 @default.
- W2275676790 hasConcept C74193536 @default.
- W2275676790 hasConcept C84894716 @default.
- W2275676790 hasConceptScore W2275676790C104317684 @default.
- W2275676790 hasConceptScore W2275676790C105795698 @default.
- W2275676790 hasConceptScore W2275676790C114614502 @default.
- W2275676790 hasConceptScore W2275676790C122123141 @default.
- W2275676790 hasConceptScore W2275676790C122280245 @default.