Matches in SemOpenAlex for { <https://semopenalex.org/work/W2275743904> ?p ?o ?g. }
- W2275743904 abstract "The Gaussian graphical model (GGM) is a powerful tool to describe the relationship between the nodes via the inverse of the covariance matrix in a complex biological system. But the inference of this matrix is problematic because of its high dimension and sparsity. From previous analyses, it has been shown that the Bernstein and Szasz polynomials can improve the accuracy of the estimate if they are used in advance of the inference as a processing step of the data. Hereby in this study, we consider whether any type of the Bernstein operators such as the Bleiman Butzer Hahn, Meyer-Konig, and Zeller operators can be performed for the improvement of the accuracy or only the Bernstein and the Szasz polynomials can satisfy this condition. From the findings of the Monte Carlo runs, we detect that the highest accuracies in GGM can be obtained under the Bernstein and Szasz polynomials, rather than all other types of the Bernstein polynomials, from small to high-dimensional biological networks." @default.
- W2275743904 created "2016-06-24" @default.
- W2275743904 creator A5004543530 @default.
- W2275743904 creator A5040145704 @default.
- W2275743904 date "2016-03-25" @default.
- W2275743904 modified "2023-09-26" @default.
- W2275743904 title "Different types of Bernstein operators in inference of Gaussian graphical model" @default.
- W2275743904 cites W1966437821 @default.
- W2275743904 cites W1979115894 @default.
- W2275743904 cites W2012852001 @default.
- W2275743904 cites W2020925091 @default.
- W2275743904 cites W2029151053 @default.
- W2275743904 cites W2030886364 @default.
- W2275743904 cites W2055841987 @default.
- W2275743904 cites W2056636001 @default.
- W2275743904 cites W2056720303 @default.
- W2275743904 cites W2074360197 @default.
- W2275743904 cites W2081746825 @default.
- W2275743904 cites W2083796085 @default.
- W2275743904 cites W2132555912 @default.
- W2275743904 cites W2135046866 @default.
- W2275743904 cites W2140514146 @default.
- W2275743904 cites W2150002853 @default.
- W2275743904 cites W2163480486 @default.
- W2275743904 cites W2168116472 @default.
- W2275743904 cites W2171877506 @default.
- W2275743904 cites W2325877082 @default.
- W2275743904 cites W3098834468 @default.
- W2275743904 cites W3126123762 @default.
- W2275743904 cites W4238253035 @default.
- W2275743904 doi "https://doi.org/10.1080/23311835.2016.1154706" @default.
- W2275743904 hasPublicationYear "2016" @default.
- W2275743904 type Work @default.
- W2275743904 sameAs 2275743904 @default.
- W2275743904 citedByCount "1" @default.
- W2275743904 countsByYear W22757439042017 @default.
- W2275743904 crossrefType "journal-article" @default.
- W2275743904 hasAuthorship W2275743904A5004543530 @default.
- W2275743904 hasAuthorship W2275743904A5040145704 @default.
- W2275743904 hasBestOaLocation W22757439041 @default.
- W2275743904 hasConcept C105795698 @default.
- W2275743904 hasConcept C106487976 @default.
- W2275743904 hasConcept C11413529 @default.
- W2275743904 hasConcept C121332964 @default.
- W2275743904 hasConcept C154945302 @default.
- W2275743904 hasConcept C159985019 @default.
- W2275743904 hasConcept C163716315 @default.
- W2275743904 hasConcept C192562407 @default.
- W2275743904 hasConcept C19499675 @default.
- W2275743904 hasConcept C202444582 @default.
- W2275743904 hasConcept C207467116 @default.
- W2275743904 hasConcept C2524010 @default.
- W2275743904 hasConcept C2776214188 @default.
- W2275743904 hasConcept C28826006 @default.
- W2275743904 hasConcept C33676613 @default.
- W2275743904 hasConcept C33923547 @default.
- W2275743904 hasConcept C34179328 @default.
- W2275743904 hasConcept C41008148 @default.
- W2275743904 hasConcept C62520636 @default.
- W2275743904 hasConceptScore W2275743904C105795698 @default.
- W2275743904 hasConceptScore W2275743904C106487976 @default.
- W2275743904 hasConceptScore W2275743904C11413529 @default.
- W2275743904 hasConceptScore W2275743904C121332964 @default.
- W2275743904 hasConceptScore W2275743904C154945302 @default.
- W2275743904 hasConceptScore W2275743904C159985019 @default.
- W2275743904 hasConceptScore W2275743904C163716315 @default.
- W2275743904 hasConceptScore W2275743904C192562407 @default.
- W2275743904 hasConceptScore W2275743904C19499675 @default.
- W2275743904 hasConceptScore W2275743904C202444582 @default.
- W2275743904 hasConceptScore W2275743904C207467116 @default.
- W2275743904 hasConceptScore W2275743904C2524010 @default.
- W2275743904 hasConceptScore W2275743904C2776214188 @default.
- W2275743904 hasConceptScore W2275743904C28826006 @default.
- W2275743904 hasConceptScore W2275743904C33676613 @default.
- W2275743904 hasConceptScore W2275743904C33923547 @default.
- W2275743904 hasConceptScore W2275743904C34179328 @default.
- W2275743904 hasConceptScore W2275743904C41008148 @default.
- W2275743904 hasConceptScore W2275743904C62520636 @default.
- W2275743904 hasLocation W22757439041 @default.
- W2275743904 hasLocation W22757439042 @default.
- W2275743904 hasOpenAccess W2275743904 @default.
- W2275743904 hasPrimaryLocation W22757439041 @default.
- W2275743904 hasRelatedWork W1532062633 @default.
- W2275743904 hasRelatedWork W1986303131 @default.
- W2275743904 hasRelatedWork W2021611695 @default.
- W2275743904 hasRelatedWork W2028771500 @default.
- W2275743904 hasRelatedWork W2050847746 @default.
- W2275743904 hasRelatedWork W2085751611 @default.
- W2275743904 hasRelatedWork W2090914026 @default.
- W2275743904 hasRelatedWork W2103194613 @default.
- W2275743904 hasRelatedWork W2317428351 @default.
- W2275743904 hasRelatedWork W2367161241 @default.
- W2275743904 hasRelatedWork W2557373325 @default.
- W2275743904 hasRelatedWork W2793813251 @default.
- W2275743904 hasRelatedWork W2953690522 @default.
- W2275743904 hasRelatedWork W2953876944 @default.
- W2275743904 hasRelatedWork W2977376697 @default.
- W2275743904 hasRelatedWork W2982363552 @default.
- W2275743904 hasRelatedWork W3048507837 @default.
- W2275743904 hasRelatedWork W3174555574 @default.