Matches in SemOpenAlex for { <https://semopenalex.org/work/W2275852026> ?p ?o ?g. }
- W2275852026 abstract "We investigate the dynamics of rod-like colloids and vesicles by means of computer simulations. These two systems are examples of the rich dynamics in systems, which is characterized by large relaxation times. Therefore, dynamical behavior in soft-matter systems is easily accessable experimentally, and soft materials are driven into non-equilibrium states, already by weak external fields. Both systems have in common that they serve as model systems for transport phenomena in cell biology. We focus on the influence of hydrodynamic interactions. This is realized by the use of a mesoscale hydrodynamics simulation technique called the Multi Particle Collision Dynamics (MPC) method, which takes the solvent into account explicitly. We calculate self-diffusion constants of rod-like colloids in the isotropic and nematic phases. Rod diffusion is strongly influenced by steric and hydrodynamic interactions between rods. Due to the anisotropy of the nematic phase also diffusion is anisotropic in such systems. We find that hydrodynamic effects lead to an increased diffusion. Moreover, our simulations show that the diffusion anisotropy of the nematic phase depends on the rod aspect ratio. Our simulation results are compared to experimental measurements of our cooperation partners (group J. K. G. Dhont, FZ-Julich) who measured diffusion constants of rod-like fd-viruses suspensions. Our observations of the hydrodynamic enhancement and the anisotropy of rod self-diffusion are in good agreement with the experiments. A small amount of spherical tracer colloids is added to the rod suspensions described above, and tracer-sphere diffusion constants are determined. They also exhibit a strong diffusion anisotropy in the nematic phase. The effect of the rod network on tracer-sphere diffusion can be divided into a steric and hydrodynamic contribution. Our results are in good agreement with theoretical predictions which incorporate hydrodynamic effects. An important quantity for the calculation of the theoretical diffusion constants is the hydrodynamic screening length, which is difficult to measure in experiments, but can be directly calculated in simulations. Due to the high concentration of rods, the typically long-ranged hydrodynamic interactions, which depend inversely proportional on the distance between colloids, are screened such that they decay exponentially. We have developed a method which allows us to calculate hydrodynamic screening lengths from the equilibrium fluctuations of solvent shear waves. With this method, we are also able to determine anisotropic screening lengths in nematic systems. We show that hydrodynamic screening lengths are of the order of typical distances between neighboring rods. The calculated screening lengths are able to explain tracer-sphere diffusion constants quantitatively. Far more complex than rod suspensions are vesicles, as they have an internal dynamics. We study vesicles in shear flow in a two-dimensional model system which shows a variety of interesting dynamical phenomena. Depending on the viscosity ratio, i.e. the ratio between the inner and the outer viscosity of the vesicle, they can either ``tumble'', ``swing'' or show ``tank-treading''. In the tumbling regime, the vesicle orientation permanently rotates, in the swinging regime the vesicle exhibits temporally periodical changes in shape and orientation and in the tank-treading regime both shape and orientation are constant, whereas the membrane rotates around the enclosed volume. For the first time, a transition from tank-treading to swinging with increasing viscosity contrast could be shown in computer simulations. Our simulations are in good agreement with a phenomenological theoretical description. Close to walls, tumbling is strongly suppressed. Furthermore, the vesicle is repelled from the wall. The origin of this repulsion is the hydrodynamical lift force. We find that the lift force decays inversely proportional to the squared wall distance and that it decays with increasing viscosity contrast. The lift force is of relevance for the motion of blood cells in blood flow." @default.
- W2275852026 created "2016-06-24" @default.
- W2275852026 creator A5009253969 @default.
- W2275852026 date "2008-01-01" @default.
- W2275852026 modified "2023-09-27" @default.
- W2275852026 title "Hydrodynamics of Rod-Like Colloids and Vesicles" @default.
- W2275852026 cites W1542028699 @default.
- W2275852026 cites W1668732012 @default.
- W2275852026 cites W1774151066 @default.
- W2275852026 cites W1963880617 @default.
- W2275852026 cites W1968523187 @default.
- W2275852026 cites W1968563303 @default.
- W2275852026 cites W1968661851 @default.
- W2275852026 cites W1969624207 @default.
- W2275852026 cites W1971568472 @default.
- W2275852026 cites W1972427137 @default.
- W2275852026 cites W1972881726 @default.
- W2275852026 cites W1973034541 @default.
- W2275852026 cites W1974817627 @default.
- W2275852026 cites W1976525831 @default.
- W2275852026 cites W1979053751 @default.
- W2275852026 cites W1980391226 @default.
- W2275852026 cites W1981410769 @default.
- W2275852026 cites W1984247769 @default.
- W2275852026 cites W1984899518 @default.
- W2275852026 cites W1985732586 @default.
- W2275852026 cites W1987567623 @default.
- W2275852026 cites W1987825422 @default.
- W2275852026 cites W1990475085 @default.
- W2275852026 cites W1993016783 @default.
- W2275852026 cites W1996224306 @default.
- W2275852026 cites W1998071404 @default.
- W2275852026 cites W1998389607 @default.
- W2275852026 cites W2002036436 @default.
- W2275852026 cites W2003418327 @default.
- W2275852026 cites W2007553441 @default.
- W2275852026 cites W2009005140 @default.
- W2275852026 cites W2010945250 @default.
- W2275852026 cites W2011627851 @default.
- W2275852026 cites W2013028922 @default.
- W2275852026 cites W2013373253 @default.
- W2275852026 cites W2018650334 @default.
- W2275852026 cites W2019173788 @default.
- W2275852026 cites W2019422012 @default.
- W2275852026 cites W2024207056 @default.
- W2275852026 cites W2024945711 @default.
- W2275852026 cites W2027348461 @default.
- W2275852026 cites W2030891958 @default.
- W2275852026 cites W2032655419 @default.
- W2275852026 cites W2035944347 @default.
- W2275852026 cites W2036208547 @default.
- W2275852026 cites W2036250862 @default.
- W2275852026 cites W2037602923 @default.
- W2275852026 cites W2038785086 @default.
- W2275852026 cites W2040259398 @default.
- W2275852026 cites W2041902442 @default.
- W2275852026 cites W2042293513 @default.
- W2275852026 cites W2045537614 @default.
- W2275852026 cites W2047167799 @default.
- W2275852026 cites W2051063814 @default.
- W2275852026 cites W2051147140 @default.
- W2275852026 cites W2056635083 @default.
- W2275852026 cites W2057332897 @default.
- W2275852026 cites W2064253429 @default.
- W2275852026 cites W2067281960 @default.
- W2275852026 cites W2068209797 @default.
- W2275852026 cites W2068715884 @default.
- W2275852026 cites W2072402059 @default.
- W2275852026 cites W2075248180 @default.
- W2275852026 cites W2075843817 @default.
- W2275852026 cites W2077217139 @default.
- W2275852026 cites W2082006552 @default.
- W2275852026 cites W2085073392 @default.
- W2275852026 cites W2089006288 @default.
- W2275852026 cites W2089794515 @default.
- W2275852026 cites W2089923129 @default.
- W2275852026 cites W2091922856 @default.
- W2275852026 cites W2093310284 @default.
- W2275852026 cites W2095468870 @default.
- W2275852026 cites W2097246107 @default.
- W2275852026 cites W2102957618 @default.
- W2275852026 cites W2104348235 @default.
- W2275852026 cites W2106907924 @default.
- W2275852026 cites W2114485872 @default.
- W2275852026 cites W2126654476 @default.
- W2275852026 cites W2136125338 @default.
- W2275852026 cites W2142293622 @default.
- W2275852026 cites W2144584450 @default.
- W2275852026 cites W2146462263 @default.
- W2275852026 cites W2149936753 @default.
- W2275852026 cites W2150738938 @default.
- W2275852026 cites W2163445538 @default.
- W2275852026 cites W2167440156 @default.
- W2275852026 cites W2171134235 @default.
- W2275852026 cites W3102042588 @default.
- W2275852026 cites W3250287 @default.
- W2275852026 cites W562467826 @default.
- W2275852026 hasPublicationYear "2008" @default.
- W2275852026 type Work @default.
- W2275852026 sameAs 2275852026 @default.