Matches in SemOpenAlex for { <https://semopenalex.org/work/W2276102670> ?p ?o ?g. }
- W2276102670 abstract "Cosmological observations suggest that the universe is homogeneous and isotropic on large scales and that the temperature fluctuations are Gaussian. This has been confirmed by Planck, that measured a level of non-Gaussianity compatible with zero at 68% CL for the primordial local, equilateral and orthogonal bispectrum amplitude . All these observational evidences seem to be in accordance with a scalar-driven inflation epoch in which a scalar field, the inflaton, drives a quasi de Sitter exponential phase of expansion. Nevertheless, Planck measures a nearly scale-invariant spectrum of fluctuations . This nearly scale-invariance suggests that the time-traslational symmetry is slightly broken during inflation. So it becomes natural to ask if other symmetries are also broken and what are the observational consequences.Furthermore, the evidence of some ‘anomalies’, previously observed in the WMAP data and now confirmed (at similar level of significance) by Planck, suggests a possible violation of some symmetries at some point in the evolution of the universe, possibly at very early times. Different anomalies have been observed: a quadrupole-octupole alignment, a dipolar power asymmetry and also an hemispherical asymmetry in power between the northern and southern hemisphere. These features suggest a possible violation of statistical isotropy and/or of parity invariance. Invariance under spatial rotations and parity transformations remains unbroken in the usual inflation models based on scalar fields, so it is necessary to modify the matter content of primordial universe introducing new field(s) or assuming new configuration pattern for the background field that differs from the usual time-dependent background scalar field one.Motivated by these observations, theoretical models that can sustain anisotropic phase of expansion can have an active role and generate statistical anisotropy in primordial fluctuations. This can be realized by introducing gauge field coupled with scalar and/or pseudoscalar fields or by considering three scalar fields in anisotropic background with an unusual breaking pattern of spacetime symmetries that does not involve breaking of time translations. Breaking of rotational symmetry implies that the correlation functions exhibit a direction dependence and, in particular, the two-point correlation function in Fourier space (power spectrum) of primordial curvature perturbations defined by $langlezeta_{k_{1}} zeta_{k_{2}}rangle=left(2piright)^3 delta^{(3)}left(textbf{k}_{1}+textbf{k}_{2}right)P_{zeta}left(textbf{k}_{1}right)$is modified as Pζ(k) =Piso (k) [1+ g* (k)( k°n)] where Piso (k) is the isotropic power spectrum, n is a space preferred direction and g* is a parameter characterizing the amplitude of violation of rotational symmetry.Within the context of primordial anisotropic models we have developed this Ph.D thesis and in particular we have analyzed a model in which a suitable coupling of the inflaton ᶲ to a vector kinetic term F2 generates an anisotropic power spectrum and a bispectrum with a non-trivial angular dependence in the squeezed limit. In particular we have found that an anisotropy amplitude g* of order 1% (10%) is possible if inflation lasted ~5 (~50) e-folds more than the usual 60 required to produce the CMB modes. One of the most important results found in this analysis concerns the presence of infrared modes of the perturbations of the gauge field. These infrared modes determine a classical vector field that tends to raise the level of statistical anisotropy to levels very close to the observational limits.Peculiar predictions of this model are TB and EB mixing between temperature and polarizations modes in the CMB due to the anisotropy and a correlation between the anisotropy in power spectrum g* and the amplitude of the bispectrum fNL that can be considered a consistency relation for all these kind of models that break the rotational invariance. Always in the aim of isotropy violation, but with a completely different approach that involves a scalar fields model, later we have shown, for the first time, how with standard gravity and scalar fields only, is possible to evades the conditions of the cosmic no-hair conjecture. In this model, dubbed solid / elastic model, inflation is driven by a solid.A prolonged slow-roll period of acceleration is guaranteed by the extreme insensibility of the solid to the spatial expansion. We point out that, because of this property, the solid is also rather inefficient in erasing anisotropic deformations of the geometry. This allows for a prolonged inflationary anisotropic solution and for a generation of a non-negligible amount of anisotropy g* in the power spectrum.Finally we have investigated parity-violating signatures of temperature and polarization bispectra of the cosmic microwave background (CMB) in an inflationary model where a rolling pseudoscalar, coupled with a vector field, produces large equilateral tensor non-Gaussianity. We have shown that the possibility to use polarization information and the parity-even and parity-odd l-space improves of many order of magnitude the detectability of such bispectra with respect to an analysis with only temperature.Considering the progressive improvements in accuracy of the next cosmological surveys it is useful to introduce and analyze particular tools, like statistical anisotropy, parity violation, new shapes of non-Gaussianity, that can help to discriminate between the plethora of primordial inflationary models." @default.
- W2276102670 created "2016-06-24" @default.
- W2276102670 creator A5032191309 @default.
- W2276102670 date "2015-11-05" @default.
- W2276102670 modified "2023-09-27" @default.
- W2276102670 title "Statistical Anisotropy and non-Gaussianity from the Early Universe" @default.
- W2276102670 cites W1494738860 @default.
- W2276102670 cites W1496593448 @default.
- W2276102670 cites W1509564388 @default.
- W2276102670 cites W1554401746 @default.
- W2276102670 cites W1555237261 @default.
- W2276102670 cites W1578534583 @default.
- W2276102670 cites W1578686441 @default.
- W2276102670 cites W1759558465 @default.
- W2276102670 cites W1762079257 @default.
- W2276102670 cites W1789112604 @default.
- W2276102670 cites W1948734516 @default.
- W2276102670 cites W1966702659 @default.
- W2276102670 cites W1968815282 @default.
- W2276102670 cites W1971369566 @default.
- W2276102670 cites W1972359390 @default.
- W2276102670 cites W1976083064 @default.
- W2276102670 cites W1978556707 @default.
- W2276102670 cites W1979147028 @default.
- W2276102670 cites W1986263569 @default.
- W2276102670 cites W1986848363 @default.
- W2276102670 cites W1987493110 @default.
- W2276102670 cites W1988721104 @default.
- W2276102670 cites W1989594798 @default.
- W2276102670 cites W2000539178 @default.
- W2276102670 cites W2003411842 @default.
- W2276102670 cites W2003543638 @default.
- W2276102670 cites W2005663180 @default.
- W2276102670 cites W2006310943 @default.
- W2276102670 cites W2009684584 @default.
- W2276102670 cites W2011104654 @default.
- W2276102670 cites W2013462576 @default.
- W2276102670 cites W2017880991 @default.
- W2276102670 cites W2017951504 @default.
- W2276102670 cites W2021241690 @default.
- W2276102670 cites W2021394016 @default.
- W2276102670 cites W2022022896 @default.
- W2276102670 cites W2025980339 @default.
- W2276102670 cites W2026229313 @default.
- W2276102670 cites W2033395130 @default.
- W2276102670 cites W2035245862 @default.
- W2276102670 cites W2036814426 @default.
- W2276102670 cites W2037232212 @default.
- W2276102670 cites W2040268923 @default.
- W2276102670 cites W2049817464 @default.
- W2276102670 cites W2051314207 @default.
- W2276102670 cites W2051730987 @default.
- W2276102670 cites W2058355918 @default.
- W2276102670 cites W2059281745 @default.
- W2276102670 cites W2060902142 @default.
- W2276102670 cites W2066641518 @default.
- W2276102670 cites W2073630296 @default.
- W2276102670 cites W2076141779 @default.
- W2276102670 cites W2078854188 @default.
- W2276102670 cites W2078857686 @default.
- W2276102670 cites W2085068386 @default.
- W2276102670 cites W2090349414 @default.
- W2276102670 cites W2090504494 @default.
- W2276102670 cites W2092167610 @default.
- W2276102670 cites W2092971669 @default.
- W2276102670 cites W2093890245 @default.
- W2276102670 cites W2109539888 @default.
- W2276102670 cites W2114909577 @default.
- W2276102670 cites W2126545717 @default.
- W2276102670 cites W2127328353 @default.
- W2276102670 cites W2132845056 @default.
- W2276102670 cites W2133084896 @default.
- W2276102670 cites W2136773624 @default.
- W2276102670 cites W2138681135 @default.
- W2276102670 cites W2138718344 @default.
- W2276102670 cites W2142809887 @default.
- W2276102670 cites W2142989245 @default.
- W2276102670 cites W2144263789 @default.
- W2276102670 cites W2144688122 @default.
- W2276102670 cites W2147462383 @default.
- W2276102670 cites W2148659656 @default.
- W2276102670 cites W2151412071 @default.
- W2276102670 cites W2153659300 @default.
- W2276102670 cites W2154911401 @default.
- W2276102670 cites W2163200446 @default.
- W2276102670 cites W2169912865 @default.
- W2276102670 cites W2952019023 @default.
- W2276102670 cites W2963746893 @default.
- W2276102670 cites W2964149200 @default.
- W2276102670 cites W3007754162 @default.
- W2276102670 cites W3033067063 @default.
- W2276102670 cites W3039012497 @default.
- W2276102670 cites W3098139633 @default.
- W2276102670 cites W3098165559 @default.
- W2276102670 cites W3098681580 @default.
- W2276102670 cites W3098968828 @default.
- W2276102670 cites W3099375731 @default.
- W2276102670 cites W3099599793 @default.
- W2276102670 cites W3099683270 @default.
- W2276102670 cites W3099837690 @default.