Matches in SemOpenAlex for { <https://semopenalex.org/work/W2276520448> ?p ?o ?g. }
- W2276520448 endingPage "1699" @default.
- W2276520448 startingPage "1684" @default.
- W2276520448 abstract "In this paper, we address the challenging problem of multiple source localization in wireless sensor networks (WSN). We develop an efficient statistical algorithm, based on the novel application of sequential Monte Carlo (SMC) sampler methodology, that is able to deal with an unknown number of sources given quantized data obtained at the fusion center from different sensors with imperfect wireless channels. We also derive the posterior Cramér-Rao bound (PCRB) of the source location estimate. The PCRB is used to analyze the accuracy of the proposed SMC sampler algorithm and the impact that quantization has on the accuracy of location estimates of the sources. Extensive experiments show the benefits of the proposed scheme in terms of the accuracy of the estimation method that is required for model selection (i.e., the number of sources) and the estimation of the source characteristics compared to the classical importance sampling method." @default.
- W2276520448 created "2016-06-24" @default.
- W2276520448 creator A5014158998 @default.
- W2276520448 creator A5042101651 @default.
- W2276520448 creator A5051994726 @default.
- W2276520448 creator A5059214058 @default.
- W2276520448 creator A5075184549 @default.
- W2276520448 creator A5087616647 @default.
- W2276520448 date "2016-04-01" @default.
- W2276520448 modified "2023-10-09" @default.
- W2276520448 title "A Bayesian Perspective on Multiple Source Localization in Wireless Sensor Networks" @default.
- W2276520448 cites W1483307070 @default.
- W2276520448 cites W1513873506 @default.
- W2276520448 cites W1774527694 @default.
- W2276520448 cites W1805402836 @default.
- W2276520448 cites W1979969656 @default.
- W2276520448 cites W1988543519 @default.
- W2276520448 cites W2004289858 @default.
- W2276520448 cites W2006805041 @default.
- W2276520448 cites W2037958743 @default.
- W2276520448 cites W2039503172 @default.
- W2276520448 cites W2039557314 @default.
- W2276520448 cites W2041679522 @default.
- W2276520448 cites W2051470259 @default.
- W2276520448 cites W2055936398 @default.
- W2276520448 cites W2057546928 @default.
- W2276520448 cites W2079128010 @default.
- W2276520448 cites W2083063286 @default.
- W2276520448 cites W2087101057 @default.
- W2276520448 cites W2095147657 @default.
- W2276520448 cites W2097380742 @default.
- W2276520448 cites W2114404361 @default.
- W2276520448 cites W2126076156 @default.
- W2276520448 cites W2131247345 @default.
- W2276520448 cites W2137307912 @default.
- W2276520448 cites W2142355131 @default.
- W2276520448 cites W2143225719 @default.
- W2276520448 cites W2147035977 @default.
- W2276520448 cites W2147357149 @default.
- W2276520448 cites W2147573544 @default.
- W2276520448 cites W2148178414 @default.
- W2276520448 cites W2168452204 @default.
- W2276520448 cites W2171206152 @default.
- W2276520448 cites W2171655636 @default.
- W2276520448 cites W3294551 @default.
- W2276520448 cites W4292691288 @default.
- W2276520448 doi "https://doi.org/10.1109/tsp.2015.2505689" @default.
- W2276520448 hasPublicationYear "2016" @default.
- W2276520448 type Work @default.
- W2276520448 sameAs 2276520448 @default.
- W2276520448 citedByCount "25" @default.
- W2276520448 countsByYear W22765204482016 @default.
- W2276520448 countsByYear W22765204482017 @default.
- W2276520448 countsByYear W22765204482018 @default.
- W2276520448 countsByYear W22765204482019 @default.
- W2276520448 countsByYear W22765204482020 @default.
- W2276520448 countsByYear W22765204482021 @default.
- W2276520448 countsByYear W22765204482022 @default.
- W2276520448 countsByYear W22765204482023 @default.
- W2276520448 crossrefType "journal-article" @default.
- W2276520448 hasAuthorship W2276520448A5014158998 @default.
- W2276520448 hasAuthorship W2276520448A5042101651 @default.
- W2276520448 hasAuthorship W2276520448A5051994726 @default.
- W2276520448 hasAuthorship W2276520448A5059214058 @default.
- W2276520448 hasAuthorship W2276520448A5075184549 @default.
- W2276520448 hasAuthorship W2276520448A5087616647 @default.
- W2276520448 hasConcept C105795698 @default.
- W2276520448 hasConcept C107673813 @default.
- W2276520448 hasConcept C11413529 @default.
- W2276520448 hasConcept C124101348 @default.
- W2276520448 hasConcept C149946192 @default.
- W2276520448 hasConcept C154945302 @default.
- W2276520448 hasConcept C167928553 @default.
- W2276520448 hasConcept C19499675 @default.
- W2276520448 hasConcept C24590314 @default.
- W2276520448 hasConcept C2781234732 @default.
- W2276520448 hasConcept C28855332 @default.
- W2276520448 hasConcept C31258907 @default.
- W2276520448 hasConcept C33923547 @default.
- W2276520448 hasConcept C33954974 @default.
- W2276520448 hasConcept C41008148 @default.
- W2276520448 hasConcept C4978587 @default.
- W2276520448 hasConcept C555944384 @default.
- W2276520448 hasConcept C76155785 @default.
- W2276520448 hasConceptScore W2276520448C105795698 @default.
- W2276520448 hasConceptScore W2276520448C107673813 @default.
- W2276520448 hasConceptScore W2276520448C11413529 @default.
- W2276520448 hasConceptScore W2276520448C124101348 @default.
- W2276520448 hasConceptScore W2276520448C149946192 @default.
- W2276520448 hasConceptScore W2276520448C154945302 @default.
- W2276520448 hasConceptScore W2276520448C167928553 @default.
- W2276520448 hasConceptScore W2276520448C19499675 @default.
- W2276520448 hasConceptScore W2276520448C24590314 @default.
- W2276520448 hasConceptScore W2276520448C2781234732 @default.
- W2276520448 hasConceptScore W2276520448C28855332 @default.
- W2276520448 hasConceptScore W2276520448C31258907 @default.
- W2276520448 hasConceptScore W2276520448C33923547 @default.
- W2276520448 hasConceptScore W2276520448C33954974 @default.