Matches in SemOpenAlex for { <https://semopenalex.org/work/W2276773041> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2276773041 endingPage "107" @default.
- W2276773041 startingPage "107" @default.
- W2276773041 abstract "Recent explosive growth of interconnected document collections such as citation networks, network of web pages, content generated by crowd-sourcing in collaborative environments, etc., has posed several challenging problems for data mining and machine learning community. One central problem in the domain of document networks is that of link prediction among any two documents or document centric entities, such as authors, based upon already present links in a given network. The problem of link prediction in document networks is a fundamental problem. Several applications, such as recovering missing link among entities in a given network of documents, citation recommendation to research professionals, collaborator recommendations to authors, discovering influential authors or bloggers in research articles or web-logs respectively, studying ideas and opinion propagation in evolving collection of research documents or news media, disambiguating references of people mentioned in news articles, etc. can be cast as a particular flavour of link prediction problem to be solved. This thesis studies following three link prediction based research problems in document networks: (i) Who influences other's actions in a collaborative research environment?, (ii)which documents get cited by a document that joins a citation network?, and (iii)which is the correct entity for an entity mention in free text?.Among various computation methods to solve domain specific link prediction problem, statistical machine learning based techniques are an increasingly acceptable method due to their capability of modeling complex relationships among documents and document centric entities and dedicated efforts from research community to make the resulting intractable inference computationally scalable. This thesis proposes two types of statistical models: (1) models that mimic the generation process of document networks e.g. citation network of scientific documents, interconnected blog articles, web pages, etc.; (2) models that are capable of incorporating a specific task oriented features as supervision. The proposed statistical models are an extension of Latent Dirichlet Allocation, also known as topic models. In this work, I show how topic models can be adapted for the above mentioned link prediction problems. The proposed techniques perform superior to previous approaches for these link prediction problems." @default.
- W2276773041 created "2016-06-24" @default.
- W2276773041 creator A5009542542 @default.
- W2276773041 creator A5014918159 @default.
- W2276773041 date "2012-01-01" @default.
- W2276773041 modified "2023-09-27" @default.
- W2276773041 title "Topic models for link prediction in document networks" @default.
- W2276773041 hasPublicationYear "2012" @default.
- W2276773041 type Work @default.
- W2276773041 sameAs 2276773041 @default.
- W2276773041 citedByCount "0" @default.
- W2276773041 crossrefType "journal-article" @default.
- W2276773041 hasAuthorship W2276773041A5009542542 @default.
- W2276773041 hasAuthorship W2276773041A5014918159 @default.
- W2276773041 hasConcept C1173588 @default.
- W2276773041 hasConcept C134306372 @default.
- W2276773041 hasConcept C136764020 @default.
- W2276773041 hasConcept C154945302 @default.
- W2276773041 hasConcept C21959979 @default.
- W2276773041 hasConcept C23123220 @default.
- W2276773041 hasConcept C2522767166 @default.
- W2276773041 hasConcept C2776214188 @default.
- W2276773041 hasConcept C2778805511 @default.
- W2276773041 hasConcept C30088001 @default.
- W2276773041 hasConcept C33923547 @default.
- W2276773041 hasConcept C36503486 @default.
- W2276773041 hasConcept C41008148 @default.
- W2276773041 hasConceptScore W2276773041C1173588 @default.
- W2276773041 hasConceptScore W2276773041C134306372 @default.
- W2276773041 hasConceptScore W2276773041C136764020 @default.
- W2276773041 hasConceptScore W2276773041C154945302 @default.
- W2276773041 hasConceptScore W2276773041C21959979 @default.
- W2276773041 hasConceptScore W2276773041C23123220 @default.
- W2276773041 hasConceptScore W2276773041C2522767166 @default.
- W2276773041 hasConceptScore W2276773041C2776214188 @default.
- W2276773041 hasConceptScore W2276773041C2778805511 @default.
- W2276773041 hasConceptScore W2276773041C30088001 @default.
- W2276773041 hasConceptScore W2276773041C33923547 @default.
- W2276773041 hasConceptScore W2276773041C36503486 @default.
- W2276773041 hasConceptScore W2276773041C41008148 @default.
- W2276773041 hasLocation W22767730411 @default.
- W2276773041 hasOpenAccess W2276773041 @default.
- W2276773041 hasPrimaryLocation W22767730411 @default.
- W2276773041 hasRelatedWork W1978156564 @default.
- W2276773041 hasRelatedWork W2078790410 @default.
- W2276773041 hasRelatedWork W2094823609 @default.
- W2276773041 hasRelatedWork W2105033546 @default.
- W2276773041 hasRelatedWork W2106898572 @default.
- W2276773041 hasRelatedWork W2130978632 @default.
- W2276773041 hasRelatedWork W2150577300 @default.
- W2276773041 hasRelatedWork W2259123132 @default.
- W2276773041 hasRelatedWork W2290588607 @default.
- W2276773041 hasRelatedWork W2295843139 @default.
- W2276773041 hasRelatedWork W2586211535 @default.
- W2276773041 hasRelatedWork W2739632297 @default.
- W2276773041 hasRelatedWork W2782565804 @default.
- W2276773041 hasRelatedWork W2810605250 @default.
- W2276773041 hasRelatedWork W2889892995 @default.
- W2276773041 hasRelatedWork W2896308983 @default.
- W2276773041 hasRelatedWork W2964123742 @default.
- W2276773041 hasRelatedWork W3125267319 @default.
- W2276773041 hasRelatedWork W3160805570 @default.
- W2276773041 hasRelatedWork W3165153695 @default.
- W2276773041 isParatext "false" @default.
- W2276773041 isRetracted "false" @default.
- W2276773041 magId "2276773041" @default.
- W2276773041 workType "article" @default.