Matches in SemOpenAlex for { <https://semopenalex.org/work/W2276923910> ?p ?o ?g. }
- W2276923910 abstract "After defining biproportion (or RAS) rigorously, we recall two fundamental theorems: unicity of biproportion (any biproportional algorithm leads to the same solution than biproportion, which turns biproportion into a mathematical tool as indisputable than proportion), ineffectiveness of separability (premultiplying or post multiplying the initial matrix by a diagonal matrix does not change the biproportional solution) and its corollary (it is equivalent to do a separable modification of the initial matrix or to do a proportional change of each biproportional factors). We then apply these theorems to show immediately that: i) no difficulties are encountered when solving the biproportional program, particularly for the question of the exponential; ii) the equivalence between applying biproportion on coefficient matrices and on transaction matrices is obvious; iii) normalizing the initial values of the biproportional factors obviously do not change anything (even if it is not possible to normalize the final value of these factors unless normalization is scalar); iv) the gravity model is equivalent to biproportion; v) biproportion and entropy give the same result; vi) when ineffectiveness of separability do not hold, the results are different as for added information. To the total, these theorems avoid re-demonstrating most properties." @default.
- W2276923910 created "2016-06-24" @default.
- W2276923910 creator A5078374740 @default.
- W2276923910 date "2011-01-01" @default.
- W2276923910 modified "2023-10-16" @default.
- W2276923910 title "Six Matrix Adjustment Problems Solved by Some Fundamental Theorems on Biproportion" @default.
- W2276923910 cites W1484232409 @default.
- W2276923910 cites W1506619878 @default.
- W2276923910 cites W1516954220 @default.
- W2276923910 cites W1885369923 @default.
- W2276923910 cites W1963495413 @default.
- W2276923910 cites W1965555277 @default.
- W2276923910 cites W1970276356 @default.
- W2276923910 cites W1970568470 @default.
- W2276923910 cites W1971560764 @default.
- W2276923910 cites W1975544611 @default.
- W2276923910 cites W1976868072 @default.
- W2276923910 cites W1978566863 @default.
- W2276923910 cites W1979721006 @default.
- W2276923910 cites W1980696027 @default.
- W2276923910 cites W1980975520 @default.
- W2276923910 cites W1982962972 @default.
- W2276923910 cites W1984387361 @default.
- W2276923910 cites W1989031884 @default.
- W2276923910 cites W1990490803 @default.
- W2276923910 cites W1995334418 @default.
- W2276923910 cites W2000347100 @default.
- W2276923910 cites W2003260134 @default.
- W2276923910 cites W2011848437 @default.
- W2276923910 cites W2025581763 @default.
- W2276923910 cites W2026264626 @default.
- W2276923910 cites W2027273616 @default.
- W2276923910 cites W2027482777 @default.
- W2276923910 cites W2029420412 @default.
- W2276923910 cites W2032558547 @default.
- W2276923910 cites W2033089695 @default.
- W2276923910 cites W2035415318 @default.
- W2276923910 cites W2040475849 @default.
- W2276923910 cites W2041526306 @default.
- W2276923910 cites W2044325058 @default.
- W2276923910 cites W2046281055 @default.
- W2276923910 cites W2049900019 @default.
- W2276923910 cites W2057092876 @default.
- W2276923910 cites W2057172500 @default.
- W2276923910 cites W2058542159 @default.
- W2276923910 cites W2065115752 @default.
- W2276923910 cites W2065992259 @default.
- W2276923910 cites W2073067128 @default.
- W2276923910 cites W2075994109 @default.
- W2276923910 cites W2076557502 @default.
- W2276923910 cites W2081237076 @default.
- W2276923910 cites W2097687259 @default.
- W2276923910 cites W2099070858 @default.
- W2276923910 cites W2117514654 @default.
- W2276923910 cites W2123722792 @default.
- W2276923910 cites W2140146054 @default.
- W2276923910 cites W2140249325 @default.
- W2276923910 cites W2158890361 @default.
- W2276923910 cites W2162529517 @default.
- W2276923910 cites W2326976677 @default.
- W2276923910 cites W2596587595 @default.
- W2276923910 cites W2802207139 @default.
- W2276923910 cites W2993383518 @default.
- W2276923910 cites W3021846434 @default.
- W2276923910 cites W3121271377 @default.
- W2276923910 cites W3121781108 @default.
- W2276923910 cites W3122846722 @default.
- W2276923910 cites W3124592749 @default.
- W2276923910 cites W3125442684 @default.
- W2276923910 cites W4236310553 @default.
- W2276923910 cites W4252028749 @default.
- W2276923910 cites W588597093 @default.
- W2276923910 cites W86015242 @default.
- W2276923910 cites W2073627476 @default.
- W2276923910 cites W29467377 @default.
- W2276923910 doi "https://doi.org/10.2139/ssrn.1692512" @default.
- W2276923910 hasPublicationYear "2011" @default.
- W2276923910 type Work @default.
- W2276923910 sameAs 2276923910 @default.
- W2276923910 citedByCount "1" @default.
- W2276923910 countsByYear W22769239102022 @default.
- W2276923910 crossrefType "journal-article" @default.
- W2276923910 hasAuthorship W2276923910A5078374740 @default.
- W2276923910 hasConcept C106487976 @default.
- W2276923910 hasConcept C136119220 @default.
- W2276923910 hasConcept C144237770 @default.
- W2276923910 hasConcept C159985019 @default.
- W2276923910 hasConcept C192562407 @default.
- W2276923910 hasConcept C199343813 @default.
- W2276923910 hasConcept C202444582 @default.
- W2276923910 hasConcept C2777686260 @default.
- W2276923910 hasConcept C28826006 @default.
- W2276923910 hasConcept C33923547 @default.
- W2276923910 hasConcept C71924100 @default.
- W2276923910 hasConceptScore W2276923910C106487976 @default.
- W2276923910 hasConceptScore W2276923910C136119220 @default.
- W2276923910 hasConceptScore W2276923910C144237770 @default.
- W2276923910 hasConceptScore W2276923910C159985019 @default.
- W2276923910 hasConceptScore W2276923910C192562407 @default.
- W2276923910 hasConceptScore W2276923910C199343813 @default.