Matches in SemOpenAlex for { <https://semopenalex.org/work/W2276972876> ?p ?o ?g. }
- W2276972876 endingPage "167" @default.
- W2276972876 startingPage "153" @default.
- W2276972876 abstract "Small, low-grade, granitic pegmatite U–Th–REE deposits are found throughout the Grenville geological province of eastern Canada. Groundwater quality at historical mining properties in the Bancroft area was investigated in order to better understand the mobility of trace elements that may pose health risks if there is renewed development of this class of mineral deposit. Groundwater samples were obtained from diamond drill holes, flowing adits and flooded mine shafts. Uranium occurs almost entirely in the dissolved (<0.45 μm) phase and is found at concentrations reaching 2579 μg/L. The Canadian maximum acceptable concentration for U in drinking water (0.02 mg/L) was exceeded in 70% of samples. Regulatory limits for 226Ra (0.5 Bq/L) and for 210Pb (0.2 Bq/L) were generally exceeded in these samples as well. Speciation modeling indicates that over 98% of dissolved U is in the form of highly mobile uranyl-Ca–carbonate complexes known to inhibit U adsorption. Uranium concentrations in groundwater appear to be correlated with the uranothorite content of the deposits rather than with their U grade. Uranothorite may be more soluble than uraninite, the other ore mineral, because of its non-ideal composition and metamict structure. Thorium, released concomitantly with U during the dissolution of uranothorite and thorian uraninite, exhibits median and maximum total concentrations of only 0.1 and 11 μg/L, respectively. Mass balance and stoichiometric considerations indicate that almost all Th is immobilized very close to its source. The sums of total light REE (La–Gd) concentrations have median and maximum values of 6 and 117 μg/L, respectively. The sums of total heavy REE (Tb–Lu) concentrations have median and maximum values of 0.8 and 21 μg/L, respectively. Light REE are derived mainly from the dissolution of metamict allanite whereas the sources of heavy REE are widely dispersed among accessory minerals. Fractionation patterns of REE in the dissolved phase are flat or concave, with negative Ce anomalies associated with more oxic groundwaters. The data suggest preferential LREE and HREE complexation with organic and carbonate ligands in the dissolved phase, respectively. Fractionation patterns in the suspended particulate phase exhibit decreasing enrichment with atomic number from La to Gd and a flat profile from Tb to Lu. This is explained by preferential sorption of LREE and uniform sorption of HREE. Manganese particulates are the most likely sorbents. Potential health risks from Th or REE in mine waters are unlikely due to the very low mobility of these elements. Uranium, on the other hand, exhibits high mobility in shallow, oxic groundwaters and drainage from some mine adits may require mitigation." @default.
- W2276972876 created "2016-06-24" @default.
- W2276972876 creator A5038835422 @default.
- W2276972876 creator A5039816461 @default.
- W2276972876 creator A5077387960 @default.
- W2276972876 date "2016-04-01" @default.
- W2276972876 modified "2023-09-26" @default.
- W2276972876 title "Trace element mobility in mine waters from granitic pegmatite U–Th–REE deposits, Bancroft area, Ontario" @default.
- W2276972876 cites W147304368 @default.
- W2276972876 cites W1597706934 @default.
- W2276972876 cites W1967192702 @default.
- W2276972876 cites W1970131464 @default.
- W2276972876 cites W1977457396 @default.
- W2276972876 cites W1980474530 @default.
- W2276972876 cites W1982985086 @default.
- W2276972876 cites W1985100845 @default.
- W2276972876 cites W1986177666 @default.
- W2276972876 cites W1992107951 @default.
- W2276972876 cites W1995706097 @default.
- W2276972876 cites W2000859078 @default.
- W2276972876 cites W2003947585 @default.
- W2276972876 cites W2006456876 @default.
- W2276972876 cites W2008546783 @default.
- W2276972876 cites W2008708401 @default.
- W2276972876 cites W2021072732 @default.
- W2276972876 cites W2022196247 @default.
- W2276972876 cites W2024597911 @default.
- W2276972876 cites W2024992079 @default.
- W2276972876 cites W2028508356 @default.
- W2276972876 cites W2032849176 @default.
- W2276972876 cites W2034935928 @default.
- W2276972876 cites W2035859777 @default.
- W2276972876 cites W2040958512 @default.
- W2276972876 cites W2041588812 @default.
- W2276972876 cites W2044140503 @default.
- W2276972876 cites W2049290507 @default.
- W2276972876 cites W2053996883 @default.
- W2276972876 cites W2055092069 @default.
- W2276972876 cites W2056342672 @default.
- W2276972876 cites W2058317629 @default.
- W2276972876 cites W2061734634 @default.
- W2276972876 cites W2073678884 @default.
- W2276972876 cites W2074751239 @default.
- W2276972876 cites W2076067530 @default.
- W2276972876 cites W2078791042 @default.
- W2276972876 cites W2078983583 @default.
- W2276972876 cites W2091609376 @default.
- W2276972876 cites W2091794361 @default.
- W2276972876 cites W2094826887 @default.
- W2276972876 cites W2102198371 @default.
- W2276972876 cites W2105042946 @default.
- W2276972876 cites W2107207950 @default.
- W2276972876 cites W2119574279 @default.
- W2276972876 cites W2126031058 @default.
- W2276972876 cites W2130442826 @default.
- W2276972876 cites W2142043799 @default.
- W2276972876 cites W2145441603 @default.
- W2276972876 cites W2314000862 @default.
- W2276972876 cites W2314523354 @default.
- W2276972876 cites W2522940733 @default.
- W2276972876 cites W262491114 @default.
- W2276972876 cites W800031239 @default.
- W2276972876 doi "https://doi.org/10.1016/j.apgeochem.2016.02.010" @default.
- W2276972876 hasPublicationYear "2016" @default.
- W2276972876 type Work @default.
- W2276972876 sameAs 2276972876 @default.
- W2276972876 citedByCount "14" @default.
- W2276972876 countsByYear W22769728762017 @default.
- W2276972876 countsByYear W22769728762018 @default.
- W2276972876 countsByYear W22769728762019 @default.
- W2276972876 countsByYear W22769728762020 @default.
- W2276972876 countsByYear W22769728762021 @default.
- W2276972876 countsByYear W22769728762022 @default.
- W2276972876 countsByYear W22769728762023 @default.
- W2276972876 crossrefType "journal-article" @default.
- W2276972876 hasAuthorship W2276972876A5038835422 @default.
- W2276972876 hasAuthorship W2276972876A5039816461 @default.
- W2276972876 hasAuthorship W2276972876A5077387960 @default.
- W2276972876 hasConcept C107872376 @default.
- W2276972876 hasConcept C127313418 @default.
- W2276972876 hasConcept C147789679 @default.
- W2276972876 hasConcept C17409809 @default.
- W2276972876 hasConcept C178790620 @default.
- W2276972876 hasConcept C185592680 @default.
- W2276972876 hasConcept C187320778 @default.
- W2276972876 hasConcept C191897082 @default.
- W2276972876 hasConcept C192562407 @default.
- W2276972876 hasConcept C195845463 @default.
- W2276972876 hasConcept C199289684 @default.
- W2276972876 hasConcept C2776432453 @default.
- W2276972876 hasConcept C2778468930 @default.
- W2276972876 hasConcept C2780181037 @default.
- W2276972876 hasConcept C2780659211 @default.
- W2276972876 hasConcept C34682378 @default.
- W2276972876 hasConcept C5166401 @default.
- W2276972876 hasConcept C527038400 @default.
- W2276972876 hasConcept C555451288 @default.
- W2276972876 hasConcept C76177295 @default.