Matches in SemOpenAlex for { <https://semopenalex.org/work/W2277043320> ?p ?o ?g. }
- W2277043320 abstract "Structural brain networks constructed based on diffusion-weighted MRI (dMRI) have provided a systems perspective to explore the organization of the human brain. Some redundant and nonexistent fibers, however, are inevitably generated in whole brain tractography. We propose to add one critical step while constructing the networks to remove these fibers using the linear fascicle evaluation (LiFE) method, and study the differences between the networks with and without LiFE optimization. For a cohort of 9 healthy adults and for 9 out of the 35 subjects from Human Connectome Project, the T1-weighted images and dMRI data are analyzed. Each brain is parcellated into 90 regions-of-interest, whilst a probabilistic tractography algorithm is applied to generate the original connectome. The elimination of redundant and nonexistent fibers from the original connectome by LiFE creates the optimized connectome, and the random selection of the same number of fibers as the optimized connectome creates the non-optimized connectome. The combination of parcellations and these connectomes leads to the optimized and non-optimized networks, respectively. The optimized networks are constructed with six weighting schemes, and the correlations of different weighting methods are analyzed. The fiber length distributions of the non-optimized and optimized connectomes are compared. The optimized and non-optimized networks are compared with regard to edges, nodes and networks, within a sparsity range of 0.75-0.95. It has been found that relatively more short fibers exist in the optimized connectome. About 24.0% edges of the optimized network are significantly different from those in the non-optimized network at a sparsity of 0.75. About 13.2% of edges are classified as false positives or the possible missing edges. The strength and betweenness centrality of some nodes are significantly different for the non-optimized and optimized networks, but not the node efficiency. The normalized clustering coefficient, the normalized characteristic path length and the small-worldness are higher in the optimized network weighted by the fiber number than in the non-optimized network. These observed differences suggest that LiFE optimization can be a crucial step for the construction of more reasonable and more accurate structural brain networks." @default.
- W2277043320 created "2016-06-24" @default.
- W2277043320 creator A5002080757 @default.
- W2277043320 creator A5003777802 @default.
- W2277043320 creator A5037061681 @default.
- W2277043320 creator A5069896173 @default.
- W2277043320 creator A5081456690 @default.
- W2277043320 date "2016-02-16" @default.
- W2277043320 modified "2023-10-01" @default.
- W2277043320 title "Structural Brain Network: What is the Effect of LiFE Optimization of Whole Brain Tractography?" @default.
- W2277043320 cites W112425480 @default.
- W2277043320 cites W1585838142 @default.
- W2277043320 cites W1603661052 @default.
- W2277043320 cites W1963887794 @default.
- W2277043320 cites W1964802316 @default.
- W2277043320 cites W1965173583 @default.
- W2277043320 cites W1965894642 @default.
- W2277043320 cites W1968179180 @default.
- W2277043320 cites W1969933202 @default.
- W2277043320 cites W1979286792 @default.
- W2277043320 cites W1982609124 @default.
- W2277043320 cites W1983485726 @default.
- W2277043320 cites W1994341528 @default.
- W2277043320 cites W1999653836 @default.
- W2277043320 cites W2001611992 @default.
- W2277043320 cites W2005933475 @default.
- W2277043320 cites W2012559638 @default.
- W2277043320 cites W2019307288 @default.
- W2277043320 cites W2020698869 @default.
- W2277043320 cites W2021947606 @default.
- W2277043320 cites W2027094605 @default.
- W2277043320 cites W2030400994 @default.
- W2277043320 cites W2033078279 @default.
- W2277043320 cites W2036446302 @default.
- W2277043320 cites W2040086679 @default.
- W2277043320 cites W2058046532 @default.
- W2277043320 cites W2058085357 @default.
- W2277043320 cites W2060464767 @default.
- W2277043320 cites W2063497316 @default.
- W2277043320 cites W2071645088 @default.
- W2277043320 cites W2073017605 @default.
- W2277043320 cites W2080403608 @default.
- W2277043320 cites W2085297965 @default.
- W2277043320 cites W2085394612 @default.
- W2277043320 cites W2087763077 @default.
- W2277043320 cites W2088964180 @default.
- W2277043320 cites W2091337721 @default.
- W2277043320 cites W2101135654 @default.
- W2277043320 cites W2107051185 @default.
- W2277043320 cites W2108895118 @default.
- W2277043320 cites W2112090702 @default.
- W2277043320 cites W2113763723 @default.
- W2277043320 cites W2115602342 @default.
- W2277043320 cites W2117987496 @default.
- W2277043320 cites W2122609459 @default.
- W2277043320 cites W2123333365 @default.
- W2277043320 cites W2126650951 @default.
- W2277043320 cites W2126838454 @default.
- W2277043320 cites W2127186958 @default.
- W2277043320 cites W2131055855 @default.
- W2277043320 cites W2131181615 @default.
- W2277043320 cites W2135164650 @default.
- W2277043320 cites W2146693559 @default.
- W2277043320 cites W2149092213 @default.
- W2277043320 cites W2152624537 @default.
- W2277043320 cites W2156127840 @default.
- W2277043320 cites W2159929956 @default.
- W2277043320 cites W2161493176 @default.
- W2277043320 cites W2162686834 @default.
- W2277043320 cites W2167822639 @default.
- W2277043320 cites W2168844688 @default.
- W2277043320 cites W2977883299 @default.
- W2277043320 cites W3098224608 @default.
- W2277043320 cites W415286823 @default.
- W2277043320 cites W4232078338 @default.
- W2277043320 cites W761823288 @default.
- W2277043320 doi "https://doi.org/10.3389/fncom.2016.00012" @default.
- W2277043320 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4754446" @default.
- W2277043320 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26909034" @default.
- W2277043320 hasPublicationYear "2016" @default.
- W2277043320 type Work @default.
- W2277043320 sameAs 2277043320 @default.
- W2277043320 citedByCount "19" @default.
- W2277043320 countsByYear W22770433202017 @default.
- W2277043320 countsByYear W22770433202019 @default.
- W2277043320 countsByYear W22770433202020 @default.
- W2277043320 countsByYear W22770433202021 @default.
- W2277043320 countsByYear W22770433202022 @default.
- W2277043320 countsByYear W22770433202023 @default.
- W2277043320 crossrefType "journal-article" @default.
- W2277043320 hasAuthorship W2277043320A5002080757 @default.
- W2277043320 hasAuthorship W2277043320A5003777802 @default.
- W2277043320 hasAuthorship W2277043320A5037061681 @default.
- W2277043320 hasAuthorship W2277043320A5069896173 @default.
- W2277043320 hasAuthorship W2277043320A5081456690 @default.
- W2277043320 hasBestOaLocation W22770433201 @default.
- W2277043320 hasConcept C11413529 @default.
- W2277043320 hasConcept C126838900 @default.
- W2277043320 hasConcept C143409427 @default.
- W2277043320 hasConcept C149550507 @default.