Matches in SemOpenAlex for { <https://semopenalex.org/work/W2277095230> ?p ?o ?g. }
- W2277095230 endingPage "115" @default.
- W2277095230 startingPage "115" @default.
- W2277095230 abstract "This dissertation investigates the following issues within the context of online social networks (OSNs). (1) How to collect data from OSNs; (2) How to estimate OSN properties; (3) How to measure OSN behavior.First a case study is conducted with real OSN data to analyze the data collection process. The following problems are answered by evaluating various factors including the choice of seeds, node selection algorithms, and sample sizes. (1) Efficiency: How fast different crawlers discover nodes/links; (2) Sensitivity: How different OSN graphs and protected users affect crawlers; (3) Bias: How major graph properties are skewed.Secondly, to estimate the size of an OSN, this dissertation introduces two estimators using widely available OSN functionalities/services. An O(logn) algorithm is proposed to replace the original O(n) solution for the MLE estimator. The RW estimator is generalized to estimate other graph properties. In-depth evaluations are performed to show the bias and variance of these estimators.Furthermore, to measure information propagation and social influence, two important but not well defined types of social behavior, we present a measurement study of 58M messages collected from 700K Twitter users. First, we employ three methods to trace message propagation and examine their applicabilities on Twitter. Besides analyzing the propagation patterns of general messages, we show how breaking news (Michael Jackson's death) spread through Twitter. Finally, we evaluate different social influences and their stabilities, assessments, and correlations. With real OSN data, we address the complications and challenges to crawl, estimate and measure OSNs. We believe that our analysis here provides valuable insights for future OSN research.The second part of this dissertation proposes a noise injection model for search privacy protection. We model the search privacy threat as an information inference problem and show how to inject noise into user queries to minimize privacy breaches. We give the lower bound for the amount of noise queries required by a perfect privacy protection and provide the optimal protection given the number of noise queries. This work presents the first theoretical analysis on user side noise injection for search privacy protection." @default.
- W2277095230 created "2016-06-24" @default.
- W2277095230 creator A5054765777 @default.
- W2277095230 creator A5088633029 @default.
- W2277095230 date "2010-01-01" @default.
- W2277095230 modified "2023-09-27" @default.
- W2277095230 title "Online social network measurements and search privacy protection" @default.
- W2277095230 cites W1590765731 @default.
- W2277095230 cites W1655958391 @default.
- W2277095230 cites W1798054139 @default.
- W2277095230 cites W1939407039 @default.
- W2277095230 cites W1964869462 @default.
- W2277095230 cites W1967551653 @default.
- W2277095230 cites W1977935992 @default.
- W2277095230 cites W1985514943 @default.
- W2277095230 cites W1988111006 @default.
- W2277095230 cites W1988115140 @default.
- W2277095230 cites W1989082213 @default.
- W2277095230 cites W2016563917 @default.
- W2277095230 cites W2016589434 @default.
- W2277095230 cites W2028897509 @default.
- W2277095230 cites W2029341294 @default.
- W2277095230 cites W2034050320 @default.
- W2277095230 cites W2041719973 @default.
- W2277095230 cites W2042445647 @default.
- W2277095230 cites W2047031127 @default.
- W2277095230 cites W2066266646 @default.
- W2277095230 cites W2067021434 @default.
- W2277095230 cites W2069734023 @default.
- W2277095230 cites W2073346043 @default.
- W2277095230 cites W2078483536 @default.
- W2277095230 cites W2086378526 @default.
- W2277095230 cites W2087207261 @default.
- W2277095230 cites W2102322109 @default.
- W2277095230 cites W2105037262 @default.
- W2277095230 cites W2112090702 @default.
- W2277095230 cites W2115022330 @default.
- W2277095230 cites W2115992100 @default.
- W2277095230 cites W2121761994 @default.
- W2277095230 cites W2124637492 @default.
- W2277095230 cites W2128906841 @default.
- W2277095230 cites W2129235726 @default.
- W2277095230 cites W2130099852 @default.
- W2277095230 cites W2135248863 @default.
- W2277095230 cites W2137135938 @default.
- W2277095230 cites W2138600229 @default.
- W2277095230 cites W2146008005 @default.
- W2277095230 cites W2154654620 @default.
- W2277095230 cites W2154897810 @default.
- W2277095230 cites W2326196429 @default.
- W2277095230 cites W2341111334 @default.
- W2277095230 cites W3122139608 @default.
- W2277095230 hasPublicationYear "2010" @default.
- W2277095230 type Work @default.
- W2277095230 sameAs 2277095230 @default.
- W2277095230 citedByCount "0" @default.
- W2277095230 crossrefType "journal-article" @default.
- W2277095230 hasAuthorship W2277095230A5054765777 @default.
- W2277095230 hasAuthorship W2277095230A5088633029 @default.
- W2277095230 hasConcept C105795698 @default.
- W2277095230 hasConcept C121955636 @default.
- W2277095230 hasConcept C124101348 @default.
- W2277095230 hasConcept C132525143 @default.
- W2277095230 hasConcept C136764020 @default.
- W2277095230 hasConcept C144133560 @default.
- W2277095230 hasConcept C151730666 @default.
- W2277095230 hasConcept C185429906 @default.
- W2277095230 hasConcept C196083921 @default.
- W2277095230 hasConcept C2777522414 @default.
- W2277095230 hasConcept C2779343474 @default.
- W2277095230 hasConcept C2780009758 @default.
- W2277095230 hasConcept C33923547 @default.
- W2277095230 hasConcept C41008148 @default.
- W2277095230 hasConcept C4727928 @default.
- W2277095230 hasConcept C518677369 @default.
- W2277095230 hasConcept C80444323 @default.
- W2277095230 hasConcept C86803240 @default.
- W2277095230 hasConceptScore W2277095230C105795698 @default.
- W2277095230 hasConceptScore W2277095230C121955636 @default.
- W2277095230 hasConceptScore W2277095230C124101348 @default.
- W2277095230 hasConceptScore W2277095230C132525143 @default.
- W2277095230 hasConceptScore W2277095230C136764020 @default.
- W2277095230 hasConceptScore W2277095230C144133560 @default.
- W2277095230 hasConceptScore W2277095230C151730666 @default.
- W2277095230 hasConceptScore W2277095230C185429906 @default.
- W2277095230 hasConceptScore W2277095230C196083921 @default.
- W2277095230 hasConceptScore W2277095230C2777522414 @default.
- W2277095230 hasConceptScore W2277095230C2779343474 @default.
- W2277095230 hasConceptScore W2277095230C2780009758 @default.
- W2277095230 hasConceptScore W2277095230C33923547 @default.
- W2277095230 hasConceptScore W2277095230C41008148 @default.
- W2277095230 hasConceptScore W2277095230C4727928 @default.
- W2277095230 hasConceptScore W2277095230C518677369 @default.
- W2277095230 hasConceptScore W2277095230C80444323 @default.
- W2277095230 hasConceptScore W2277095230C86803240 @default.
- W2277095230 hasLocation W22770952301 @default.
- W2277095230 hasOpenAccess W2277095230 @default.
- W2277095230 hasPrimaryLocation W22770952301 @default.