Matches in SemOpenAlex for { <https://semopenalex.org/work/W2277188614> ?p ?o ?g. }
- W2277188614 endingPage "89" @default.
- W2277188614 startingPage "89" @default.
- W2277188614 abstract "Robust and rapid image dense matching is the key to large-scale three-dimensional (3D) reconstruction for multiple Unmanned Aerial Vehicle (UAV) images. However, the following problems must be addressed: (1) the amount of UAV image data is very large, but ordinary computer memory is limited; (2) the patch-based multi-view stereo-matching algorithm (PMVS) does not work well for narrow-baseline cases, and its computing efficiency is relatively low, and thus, it is difficult to meet the UAV photogrammetry’s requirements of convenience and speed. This paper proposes an Image-grouping and Self-Adaptive Patch-based Multi-View Stereo-matching algorithm (IG-SAPMVS) for multiple UAV imagery. First, multiple UAV images were grouped reasonably by a certain grouping strategy. Second, image dense matching was performed in each group and included three processes. (1) Initial feature-matching consists of two steps: The first was feature point detection and matching, which made some improvements to PMVS, according to the characteristics of UAV imagery. The second was edge point detection and matching, which aimed to control matching propagation during the expansion process; (2) The second process was matching propagation based on the self-adaptive patch. Initial patches were built that were centered by the obtained 3D seed points, and these were repeatedly expanded. The patches were prevented from crossing the discontinuous terrain by using the edge constraint, and the extent size and shape of the patches could automatically adapt to the terrain relief; (3) The third process was filtering the erroneous matching points. Taken the overlap problem between each group of 3D dense point clouds into account, the matching results were merged into a whole. Experiments conducted on three sets of typical UAV images with different texture features demonstrate that the proposed algorithm can address a large amount of UAV image data almost without computer memory restrictions, and the processing efficiency is significantly better than that of the PMVS algorithm and the matching accuracy is equal to that of the state-of-the-art PMVS algorithm." @default.
- W2277188614 created "2016-06-24" @default.
- W2277188614 creator A5003677173 @default.
- W2277188614 creator A5027979530 @default.
- W2277188614 creator A5063081672 @default.
- W2277188614 creator A5070369693 @default.
- W2277188614 creator A5071841938 @default.
- W2277188614 creator A5083033930 @default.
- W2277188614 creator A5085841491 @default.
- W2277188614 creator A5086797639 @default.
- W2277188614 date "2016-01-23" @default.
- W2277188614 modified "2023-10-17" @default.
- W2277188614 title "Multi-View Stereo Matching Based on Self-Adaptive Patch and Image Grouping for Multiple Unmanned Aerial Vehicle Imagery" @default.
- W2277188614 cites W1532175189 @default.
- W2277188614 cites W1971558391 @default.
- W2277188614 cites W1998943389 @default.
- W2277188614 cites W1999240370 @default.
- W2277188614 cites W2022367031 @default.
- W2277188614 cites W2028758295 @default.
- W2277188614 cites W2047174670 @default.
- W2277188614 cites W2088805832 @default.
- W2277188614 cites W2093953405 @default.
- W2277188614 cites W2099139325 @default.
- W2277188614 cites W2107762993 @default.
- W2277188614 cites W2108417695 @default.
- W2277188614 cites W2113988548 @default.
- W2277188614 cites W2117007522 @default.
- W2277188614 cites W2117248802 @default.
- W2277188614 cites W2119213281 @default.
- W2277188614 cites W2120432884 @default.
- W2277188614 cites W2120977599 @default.
- W2277188614 cites W2129404737 @default.
- W2277188614 cites W2133439240 @default.
- W2277188614 cites W2138318630 @default.
- W2277188614 cites W2145023731 @default.
- W2277188614 cites W2151103935 @default.
- W2277188614 cites W2151646056 @default.
- W2277188614 cites W2161914072 @default.
- W2277188614 cites W2171039345 @default.
- W2277188614 cites W2237424363 @default.
- W2277188614 cites W2324761925 @default.
- W2277188614 cites W4376453786 @default.
- W2277188614 cites W2584428883 @default.
- W2277188614 doi "https://doi.org/10.3390/rs8020089" @default.
- W2277188614 hasPublicationYear "2016" @default.
- W2277188614 type Work @default.
- W2277188614 sameAs 2277188614 @default.
- W2277188614 citedByCount "25" @default.
- W2277188614 countsByYear W22771886142016 @default.
- W2277188614 countsByYear W22771886142017 @default.
- W2277188614 countsByYear W22771886142018 @default.
- W2277188614 countsByYear W22771886142019 @default.
- W2277188614 countsByYear W22771886142020 @default.
- W2277188614 countsByYear W22771886142021 @default.
- W2277188614 countsByYear W22771886142022 @default.
- W2277188614 countsByYear W22771886142023 @default.
- W2277188614 crossrefType "journal-article" @default.
- W2277188614 hasAuthorship W2277188614A5003677173 @default.
- W2277188614 hasAuthorship W2277188614A5027979530 @default.
- W2277188614 hasAuthorship W2277188614A5063081672 @default.
- W2277188614 hasAuthorship W2277188614A5070369693 @default.
- W2277188614 hasAuthorship W2277188614A5071841938 @default.
- W2277188614 hasAuthorship W2277188614A5083033930 @default.
- W2277188614 hasAuthorship W2277188614A5085841491 @default.
- W2277188614 hasAuthorship W2277188614A5086797639 @default.
- W2277188614 hasBestOaLocation W22771886141 @default.
- W2277188614 hasConcept C105795698 @default.
- W2277188614 hasConcept C111919701 @default.
- W2277188614 hasConcept C117455697 @default.
- W2277188614 hasConcept C131979681 @default.
- W2277188614 hasConcept C138885662 @default.
- W2277188614 hasConcept C154945302 @default.
- W2277188614 hasConcept C161840515 @default.
- W2277188614 hasConcept C165064840 @default.
- W2277188614 hasConcept C200336642 @default.
- W2277188614 hasConcept C205649164 @default.
- W2277188614 hasConcept C2524010 @default.
- W2277188614 hasConcept C2776401178 @default.
- W2277188614 hasConcept C28719098 @default.
- W2277188614 hasConcept C31972630 @default.
- W2277188614 hasConcept C33923547 @default.
- W2277188614 hasConcept C41008148 @default.
- W2277188614 hasConcept C41895202 @default.
- W2277188614 hasConcept C58640448 @default.
- W2277188614 hasConcept C98045186 @default.
- W2277188614 hasConceptScore W2277188614C105795698 @default.
- W2277188614 hasConceptScore W2277188614C111919701 @default.
- W2277188614 hasConceptScore W2277188614C117455697 @default.
- W2277188614 hasConceptScore W2277188614C131979681 @default.
- W2277188614 hasConceptScore W2277188614C138885662 @default.
- W2277188614 hasConceptScore W2277188614C154945302 @default.
- W2277188614 hasConceptScore W2277188614C161840515 @default.
- W2277188614 hasConceptScore W2277188614C165064840 @default.
- W2277188614 hasConceptScore W2277188614C200336642 @default.
- W2277188614 hasConceptScore W2277188614C205649164 @default.
- W2277188614 hasConceptScore W2277188614C2524010 @default.
- W2277188614 hasConceptScore W2277188614C2776401178 @default.
- W2277188614 hasConceptScore W2277188614C28719098 @default.