Matches in SemOpenAlex for { <https://semopenalex.org/work/W2277584332> ?p ?o ?g. }
- W2277584332 abstract "Process of finding the right expert for a given problem in an organization is becoming feasible. Using web surfing data it is feasible to find advisor who is most likely possessing the desired piece of fine grained knowledge related with given query. Web surfing data is clustered into tasks by using Gaussian Dirichlet process mixture model. In order to mine micro aspects in each task a novel discriminative infinite Hidden Markov Model is developed. The fine grained knowledge for each task can have hierarchical structure. In order to implement hierarchy apply the discriminative infinite Hidden Markov Model on micro aspects iteratively. Keywords—Advisor Search, Gaussian Dirichlet process mixture model, discriminative infinite Hidden Markov Model, Micro aspects , task, web surfing data, Clustering I. INTRODUCTION In a collaborative environment every person shares information with every other person. It is common that different members of the group may try to access the same information separately. For example, this happens in a research lab, where members are focused on projects which require similar background knowledge. It may happen that the researcher tries to solve a particular problem using one method which he/ she is not familiar with but has been studied by another researcher. In this case finding the right individual who already knows something in that field is always superior than studying by oneself. Because people can provide live interaction, better communication and give more insights on that particular problem and also gives what were the problems faced by him/her. Finding the right person is always hard due to a number of reasons. This scenario is different from conventional expert (14) search problem in that finding expert (16) on particular problem is dependent on associated documents in the enterprise repository. Our goal is to search advisors who know something related to that query. In order to analyze knowledge acquired by web users we will analyze users web surfing (1) and browsing activities which will reveal users knowledge gaining process on micro aspect level. For finding web surfing activities of each user one can use tcpdump for Linux platform and windump for Windows platform.Latent semantic structures in the Web surfing shows people's knowledge gaining process and web surfing data is good improvement over documents. A two step framework for mining micro aspect in each task has been proposed. In the first step, Infinite Gaussian mixture model (3) based on Dirichlet Process (4) has been designed to cluster sessions which are generated by Web surfing activities. In the second step, micro aspect from session in each task has been extracted. A novel discriminative infinite Hidden Markov Model (d-iHMM ) is applied to the micro aspects for mining and patterns in each task. Finally a language model (19) based expert search method is applied over mined aspects to search for advisor. The aim of topic is not to find persons who are experts but to find persons who have desired knowledge related to the query. Also implementing fine-grained knowledge in hierarchical way is difficult because knowledge can contain micro aspects with similar topics. This problem can be solved by applying d-iHMM model iteratively. In order to solve d-iHMM Beam sampling (5) is used." @default.
- W2277584332 created "2016-06-24" @default.
- W2277584332 creator A5032017272 @default.
- W2277584332 creator A5039620203 @default.
- W2277584332 date "2015-01-12" @default.
- W2277584332 modified "2023-09-28" @default.
- W2277584332 title "Expert Finding using discriminative infinite Hidden Markov Model" @default.
- W2277584332 cites W11620817 @default.
- W2277584332 cites W2016081253 @default.
- W2277584332 cites W2038227503 @default.
- W2277584332 cites W2038819721 @default.
- W2277584332 cites W2064890829 @default.
- W2277584332 cites W2083973186 @default.
- W2277584332 cites W2118639955 @default.
- W2277584332 cites W2120636621 @default.
- W2277584332 cites W2126226055 @default.
- W2277584332 cites W2140008999 @default.
- W2277584332 cites W2143561480 @default.
- W2277584332 cites W2158266063 @default.
- W2277584332 cites W2165389462 @default.
- W2277584332 cites W2169895393 @default.
- W2277584332 cites W2735822161 @default.
- W2277584332 cites W3148527572 @default.
- W2277584332 cites W47692436 @default.
- W2277584332 hasPublicationYear "2015" @default.
- W2277584332 type Work @default.
- W2277584332 sameAs 2277584332 @default.
- W2277584332 citedByCount "0" @default.
- W2277584332 crossrefType "journal-article" @default.
- W2277584332 hasAuthorship W2277584332A5032017272 @default.
- W2277584332 hasAuthorship W2277584332A5039620203 @default.
- W2277584332 hasConcept C111919701 @default.
- W2277584332 hasConcept C119857082 @default.
- W2277584332 hasConcept C124101348 @default.
- W2277584332 hasConcept C141318989 @default.
- W2277584332 hasConcept C154945302 @default.
- W2277584332 hasConcept C162324750 @default.
- W2277584332 hasConcept C171686336 @default.
- W2277584332 hasConcept C187736073 @default.
- W2277584332 hasConcept C23224414 @default.
- W2277584332 hasConcept C2776214188 @default.
- W2277584332 hasConcept C2780451532 @default.
- W2277584332 hasConcept C2781280628 @default.
- W2277584332 hasConcept C31170391 @default.
- W2277584332 hasConcept C34447519 @default.
- W2277584332 hasConcept C41008148 @default.
- W2277584332 hasConcept C500882744 @default.
- W2277584332 hasConcept C61224824 @default.
- W2277584332 hasConcept C73555534 @default.
- W2277584332 hasConcept C97931131 @default.
- W2277584332 hasConcept C98045186 @default.
- W2277584332 hasConcept C98763669 @default.
- W2277584332 hasConceptScore W2277584332C111919701 @default.
- W2277584332 hasConceptScore W2277584332C119857082 @default.
- W2277584332 hasConceptScore W2277584332C124101348 @default.
- W2277584332 hasConceptScore W2277584332C141318989 @default.
- W2277584332 hasConceptScore W2277584332C154945302 @default.
- W2277584332 hasConceptScore W2277584332C162324750 @default.
- W2277584332 hasConceptScore W2277584332C171686336 @default.
- W2277584332 hasConceptScore W2277584332C187736073 @default.
- W2277584332 hasConceptScore W2277584332C23224414 @default.
- W2277584332 hasConceptScore W2277584332C2776214188 @default.
- W2277584332 hasConceptScore W2277584332C2780451532 @default.
- W2277584332 hasConceptScore W2277584332C2781280628 @default.
- W2277584332 hasConceptScore W2277584332C31170391 @default.
- W2277584332 hasConceptScore W2277584332C34447519 @default.
- W2277584332 hasConceptScore W2277584332C41008148 @default.
- W2277584332 hasConceptScore W2277584332C500882744 @default.
- W2277584332 hasConceptScore W2277584332C61224824 @default.
- W2277584332 hasConceptScore W2277584332C73555534 @default.
- W2277584332 hasConceptScore W2277584332C97931131 @default.
- W2277584332 hasConceptScore W2277584332C98045186 @default.
- W2277584332 hasConceptScore W2277584332C98763669 @default.
- W2277584332 hasIssue "11" @default.
- W2277584332 hasLocation W22775843321 @default.
- W2277584332 hasOpenAccess W2277584332 @default.
- W2277584332 hasPrimaryLocation W22775843321 @default.
- W2277584332 hasRelatedWork W1559721351 @default.
- W2277584332 hasRelatedWork W1568294881 @default.
- W2277584332 hasRelatedWork W161996565 @default.
- W2277584332 hasRelatedWork W2053895159 @default.
- W2277584332 hasRelatedWork W2076006872 @default.
- W2277584332 hasRelatedWork W2243893955 @default.
- W2277584332 hasRelatedWork W2251020985 @default.
- W2277584332 hasRelatedWork W2338439566 @default.
- W2277584332 hasRelatedWork W2515992743 @default.
- W2277584332 hasRelatedWork W2592998755 @default.
- W2277584332 hasRelatedWork W2793099520 @default.
- W2277584332 hasRelatedWork W2810011773 @default.
- W2277584332 hasRelatedWork W2893117340 @default.
- W2277584332 hasRelatedWork W2952955766 @default.
- W2277584332 hasRelatedWork W2953859281 @default.
- W2277584332 hasRelatedWork W2995334457 @default.
- W2277584332 hasRelatedWork W3013581505 @default.
- W2277584332 hasRelatedWork W3032454931 @default.
- W2277584332 hasRelatedWork W3138421918 @default.
- W2277584332 hasRelatedWork W2399362507 @default.
- W2277584332 hasVolume "2" @default.
- W2277584332 isParatext "false" @default.
- W2277584332 isRetracted "false" @default.