Matches in SemOpenAlex for { <https://semopenalex.org/work/W2277771784> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W2277771784 abstract "This article presents an overview of artificial neural network (ANN) applications in forecasting and possible forecasting accuracy improvements. Artificial neural networks are computational models and universal approximators, which can be applied to the time series forecasting with a high accuracy. A great rise in research activities was observed in using artificial neural networks for forecasting. This paper examines multi-layer perceptrons (MLPs) – back-propagation neural network (BPNN), Elman recurrent neural network (ERNN), grey relational artificial neural network (GRANN) and hybrid systems – models that fuse artificial neural network with wavelets and auto- regressive integrated moving average (ARIMA)." @default.
- W2277771784 created "2016-06-24" @default.
- W2277771784 creator A5032509605 @default.
- W2277771784 creator A5070821591 @default.
- W2277771784 date "2014-01-01" @default.
- W2277771784 modified "2023-09-30" @default.
- W2277771784 title "Methods of Forecasting Based on Artificial Neural Networks/ Prognozēšanas metodes, kas balstītas uz mākslīgajiem neironu tīkliem/ Методы прогнозирования, основанные на искусственных нейронных сетях" @default.
- W2277771784 cites W1586335931 @default.
- W2277771784 cites W2015393497 @default.
- W2277771784 cites W2029803196 @default.
- W2277771784 cites W2057518741 @default.
- W2277771784 cites W2068773846 @default.
- W2277771784 cites W2098063401 @default.
- W2277771784 cites W2117014758 @default.
- W2277771784 cites W2123513648 @default.
- W2277771784 cites W2147667915 @default.
- W2277771784 cites W2158638608 @default.
- W2277771784 cites W2189612184 @default.
- W2277771784 cites W2289156018 @default.
- W2277771784 doi "https://doi.org/10.1515/itms-2014-0003" @default.
- W2277771784 hasPublicationYear "2014" @default.
- W2277771784 type Work @default.
- W2277771784 sameAs 2277771784 @default.
- W2277771784 citedByCount "0" @default.
- W2277771784 crossrefType "journal-article" @default.
- W2277771784 hasAuthorship W2277771784A5032509605 @default.
- W2277771784 hasAuthorship W2277771784A5070821591 @default.
- W2277771784 hasBestOaLocation W22777717841 @default.
- W2277771784 hasConcept C119857082 @default.
- W2277771784 hasConcept C151406439 @default.
- W2277771784 hasConcept C154945302 @default.
- W2277771784 hasConcept C24338571 @default.
- W2277771784 hasConcept C41008148 @default.
- W2277771784 hasConcept C50644808 @default.
- W2277771784 hasConcept C60908668 @default.
- W2277771784 hasConceptScore W2277771784C119857082 @default.
- W2277771784 hasConceptScore W2277771784C151406439 @default.
- W2277771784 hasConceptScore W2277771784C154945302 @default.
- W2277771784 hasConceptScore W2277771784C24338571 @default.
- W2277771784 hasConceptScore W2277771784C41008148 @default.
- W2277771784 hasConceptScore W2277771784C50644808 @default.
- W2277771784 hasConceptScore W2277771784C60908668 @default.
- W2277771784 hasIssue "1" @default.
- W2277771784 hasLocation W22777717841 @default.
- W2277771784 hasLocation W22777717842 @default.
- W2277771784 hasOpenAccess W2277771784 @default.
- W2277771784 hasPrimaryLocation W22777717841 @default.
- W2277771784 hasRelatedWork W2054070363 @default.
- W2277771784 hasRelatedWork W2182253368 @default.
- W2277771784 hasRelatedWork W2210334943 @default.
- W2277771784 hasRelatedWork W2270177354 @default.
- W2277771784 hasRelatedWork W2783038087 @default.
- W2277771784 hasRelatedWork W3185179407 @default.
- W2277771784 hasRelatedWork W4206558754 @default.
- W2277771784 hasRelatedWork W4245248941 @default.
- W2277771784 hasRelatedWork W4280611221 @default.
- W2277771784 hasRelatedWork W1629725936 @default.
- W2277771784 hasVolume "17" @default.
- W2277771784 isParatext "false" @default.
- W2277771784 isRetracted "false" @default.
- W2277771784 magId "2277771784" @default.
- W2277771784 workType "article" @default.