Matches in SemOpenAlex for { <https://semopenalex.org/work/W2277794328> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2277794328 abstract "Nowadays, meta-heuristic optimization algorithms have been extensively applied to a variety of Machine Learning (ML) applications such as classification, recognition, prediction, data mining and web mining, combinatorial optimization and so on. The majority of them imitate the behavior of natural phenomena to find the best solution. The algorithms find promising regions in an affordable time due to exploration and exploitation ability. Although the mentioned algorithms have satisfactory results in various fields, none of them is able to present a higher performance for all applications. Therefore, searching for a new meta-heuristic algorithm is an open problem. In this study, an improved scheme of Particle Swarm Optimization (PSO) based on Newtonian’s motion laws called Centripetal Accelerated Particle Swarm Optimization (CAPSO) has been proposed to accelerate learning process and to increase accuracy in solving ML problems. A binary mode of the proposed algorithm called Binary Centripetal Accelerated Particle Swarm Optimization (BCAPSO) has been developed for discrete (binary) search space. These algorithms have been employed for problems such as non-linear benchmark functions, Multi-Layer Perceptron (MLP) learning and the 0-1 Multidimensional Knapsack Problem (MKP). The results have been compared with several well-known meta-heuristic population-based algorithms in both continuous (real) and binary search spaces. From the experiments, it could be concluded that the proposed methods show significant results in function optimization for real and binary search spaces, MLP learning for classification problems and solving MKP for binary search space." @default.
- W2277794328 created "2016-06-24" @default.
- W2277794328 creator A5000098516 @default.
- W2277794328 date "2013-01-01" @default.
- W2277794328 modified "2023-09-24" @default.
- W2277794328 title "Centripetal accelerated particle swarm optimization and its applications in machine learning" @default.
- W2277794328 hasPublicationYear "2013" @default.
- W2277794328 type Work @default.
- W2277794328 sameAs 2277794328 @default.
- W2277794328 citedByCount "0" @default.
- W2277794328 crossrefType "dissertation" @default.
- W2277794328 hasAuthorship W2277794328A5000098516 @default.
- W2277794328 hasConcept C109718341 @default.
- W2277794328 hasConcept C113138325 @default.
- W2277794328 hasConcept C11413529 @default.
- W2277794328 hasConcept C119487961 @default.
- W2277794328 hasConcept C119857082 @default.
- W2277794328 hasConcept C122357587 @default.
- W2277794328 hasConcept C126255220 @default.
- W2277794328 hasConcept C13280743 @default.
- W2277794328 hasConcept C137836250 @default.
- W2277794328 hasConcept C154945302 @default.
- W2277794328 hasConcept C173801870 @default.
- W2277794328 hasConcept C185798385 @default.
- W2277794328 hasConcept C205649164 @default.
- W2277794328 hasConcept C33923547 @default.
- W2277794328 hasConcept C41008148 @default.
- W2277794328 hasConcept C50644808 @default.
- W2277794328 hasConcept C60908668 @default.
- W2277794328 hasConcept C85617194 @default.
- W2277794328 hasConceptScore W2277794328C109718341 @default.
- W2277794328 hasConceptScore W2277794328C113138325 @default.
- W2277794328 hasConceptScore W2277794328C11413529 @default.
- W2277794328 hasConceptScore W2277794328C119487961 @default.
- W2277794328 hasConceptScore W2277794328C119857082 @default.
- W2277794328 hasConceptScore W2277794328C122357587 @default.
- W2277794328 hasConceptScore W2277794328C126255220 @default.
- W2277794328 hasConceptScore W2277794328C13280743 @default.
- W2277794328 hasConceptScore W2277794328C137836250 @default.
- W2277794328 hasConceptScore W2277794328C154945302 @default.
- W2277794328 hasConceptScore W2277794328C173801870 @default.
- W2277794328 hasConceptScore W2277794328C185798385 @default.
- W2277794328 hasConceptScore W2277794328C205649164 @default.
- W2277794328 hasConceptScore W2277794328C33923547 @default.
- W2277794328 hasConceptScore W2277794328C41008148 @default.
- W2277794328 hasConceptScore W2277794328C50644808 @default.
- W2277794328 hasConceptScore W2277794328C60908668 @default.
- W2277794328 hasConceptScore W2277794328C85617194 @default.
- W2277794328 hasLocation W22777943281 @default.
- W2277794328 hasOpenAccess W2277794328 @default.
- W2277794328 hasPrimaryLocation W22777943281 @default.
- W2277794328 hasRelatedWork W2056986886 @default.
- W2277794328 hasRelatedWork W2295567583 @default.
- W2277794328 hasRelatedWork W2570132236 @default.
- W2277794328 hasRelatedWork W2754236323 @default.
- W2277794328 hasRelatedWork W2790368141 @default.
- W2277794328 hasRelatedWork W2794633085 @default.
- W2277794328 hasRelatedWork W2888496908 @default.
- W2277794328 hasRelatedWork W2893426836 @default.
- W2277794328 hasRelatedWork W2914097531 @default.
- W2277794328 hasRelatedWork W2936364188 @default.
- W2277794328 hasRelatedWork W2946413385 @default.
- W2277794328 hasRelatedWork W2968223372 @default.
- W2277794328 hasRelatedWork W2988847635 @default.
- W2277794328 hasRelatedWork W3009262009 @default.
- W2277794328 hasRelatedWork W3010765752 @default.
- W2277794328 hasRelatedWork W3093197087 @default.
- W2277794328 hasRelatedWork W3122540550 @default.
- W2277794328 hasRelatedWork W3130125032 @default.
- W2277794328 hasRelatedWork W3140207169 @default.
- W2277794328 hasRelatedWork W37712601 @default.
- W2277794328 isParatext "false" @default.
- W2277794328 isRetracted "false" @default.
- W2277794328 magId "2277794328" @default.
- W2277794328 workType "dissertation" @default.