Matches in SemOpenAlex for { <https://semopenalex.org/work/W2278536479> ?p ?o ?g. }
- W2278536479 endingPage "653" @default.
- W2278536479 startingPage "635" @default.
- W2278536479 abstract "A new manifold-based reduced order model for nonlinear problems in multiscale modeling of heterogeneous hyperelastic materials is presented. The model relies on a global geometric framework for nonlinear dimensionality reduction (Isomap), and the macroscopic loading parameters are linked to the reduced space using a Neural Network. The proposed model provides both homogenization and localization of the multiscale solution in the context of computational homogenization. To construct the manifold, we perform a number of large three-dimensional simulations of a statistically representative unit cell using a parallel finite strain finite element solver. The manifold-based reduced order model is verified using common principles from the machine-learning community. Both homogenization and localization of the multiscale solution are demonstrated on a large three-dimensional example and the local microscopic fields as well as the homogenized macroscopic potential are obtained with acceptable engineering accuracy." @default.
- W2278536479 created "2016-06-24" @default.
- W2278536479 creator A5006423008 @default.
- W2278536479 creator A5071037445 @default.
- W2278536479 date "2016-05-01" @default.
- W2278536479 modified "2023-10-16" @default.
- W2278536479 title "A nonlinear manifold-based reduced order model for multiscale analysis of heterogeneous hyperelastic materials" @default.
- W2278536479 cites W1606775516 @default.
- W2278536479 cites W1966977432 @default.
- W2278536479 cites W1969521796 @default.
- W2278536479 cites W1971713783 @default.
- W2278536479 cites W1976579441 @default.
- W2278536479 cites W1984050073 @default.
- W2278536479 cites W1991983920 @default.
- W2278536479 cites W1999613968 @default.
- W2278536479 cites W2001141328 @default.
- W2278536479 cites W2007650703 @default.
- W2278536479 cites W2009463428 @default.
- W2278536479 cites W2010865744 @default.
- W2278536479 cites W2011785844 @default.
- W2278536479 cites W2017507343 @default.
- W2278536479 cites W2020837715 @default.
- W2278536479 cites W2033793034 @default.
- W2278536479 cites W2045713433 @default.
- W2278536479 cites W2047668002 @default.
- W2278536479 cites W2049618256 @default.
- W2278536479 cites W2050291380 @default.
- W2278536479 cites W2053186076 @default.
- W2278536479 cites W2058415297 @default.
- W2278536479 cites W2058660576 @default.
- W2278536479 cites W2059364999 @default.
- W2278536479 cites W2064306347 @default.
- W2278536479 cites W2086286482 @default.
- W2278536479 cites W2089062907 @default.
- W2278536479 cites W2089292736 @default.
- W2278536479 cites W2094100483 @default.
- W2278536479 cites W2094120317 @default.
- W2278536479 cites W2094586029 @default.
- W2278536479 cites W2097308346 @default.
- W2278536479 cites W2102774653 @default.
- W2278536479 cites W2105067148 @default.
- W2278536479 cites W2112823474 @default.
- W2278536479 cites W2113342867 @default.
- W2278536479 cites W2116402476 @default.
- W2278536479 cites W2120486607 @default.
- W2278536479 cites W2124440167 @default.
- W2278536479 cites W2133066748 @default.
- W2278536479 cites W2137825056 @default.
- W2278536479 cites W2137983211 @default.
- W2278536479 cites W2141155068 @default.
- W2278536479 cites W2151399017 @default.
- W2278536479 cites W2155648010 @default.
- W2278536479 cites W2161330835 @default.
- W2278536479 cites W2164788888 @default.
- W2278536479 cites W2170343812 @default.
- W2278536479 cites W2217983214 @default.
- W2278536479 cites W2409699594 @default.
- W2278536479 cites W4213367101 @default.
- W2278536479 doi "https://doi.org/10.1016/j.jcp.2016.01.040" @default.
- W2278536479 hasPublicationYear "2016" @default.
- W2278536479 type Work @default.
- W2278536479 sameAs 2278536479 @default.
- W2278536479 citedByCount "60" @default.
- W2278536479 countsByYear W22785364792017 @default.
- W2278536479 countsByYear W22785364792018 @default.
- W2278536479 countsByYear W22785364792019 @default.
- W2278536479 countsByYear W22785364792020 @default.
- W2278536479 countsByYear W22785364792021 @default.
- W2278536479 countsByYear W22785364792022 @default.
- W2278536479 countsByYear W22785364792023 @default.
- W2278536479 crossrefType "journal-article" @default.
- W2278536479 hasAuthorship W2278536479A5006423008 @default.
- W2278536479 hasAuthorship W2278536479A5071037445 @default.
- W2278536479 hasBestOaLocation W22785364791 @default.
- W2278536479 hasConcept C111030470 @default.
- W2278536479 hasConcept C11413529 @default.
- W2278536479 hasConcept C121332964 @default.
- W2278536479 hasConcept C126255220 @default.
- W2278536479 hasConcept C127413603 @default.
- W2278536479 hasConcept C130217890 @default.
- W2278536479 hasConcept C135628077 @default.
- W2278536479 hasConcept C141123601 @default.
- W2278536479 hasConcept C147370603 @default.
- W2278536479 hasConcept C147597530 @default.
- W2278536479 hasConcept C151876577 @default.
- W2278536479 hasConcept C154945302 @default.
- W2278536479 hasConcept C158622935 @default.
- W2278536479 hasConcept C185592680 @default.
- W2278536479 hasConcept C18903297 @default.
- W2278536479 hasConcept C2778626561 @default.
- W2278536479 hasConcept C2778722038 @default.
- W2278536479 hasConcept C2778770139 @default.
- W2278536479 hasConcept C2779277453 @default.
- W2278536479 hasConcept C28826006 @default.
- W2278536479 hasConcept C33923547 @default.
- W2278536479 hasConcept C41008148 @default.
- W2278536479 hasConcept C50644808 @default.
- W2278536479 hasConcept C529865628 @default.