Matches in SemOpenAlex for { <https://semopenalex.org/work/W2278956420> ?p ?o ?g. }
- W2278956420 endingPage "220" @default.
- W2278956420 startingPage "210" @default.
- W2278956420 abstract "Electronegative coadsorbates such as atomic oxygen (O⁎) and hydroxide (OH⁎) can act as Brønsted bases when bound to Group 11 as well as particular Group 8–10 metal surfaces and aid in the activation of X–H bonds. First-principle density functional theory calculations were carried out to systematically explore the reactivity of the C–H bonds of methane and surface methyl intermediates as well as the O–H bond of methanol directly and with the assistance of coadsorbed O⁎ and OH⁎ intermediates over Group 11 (Cu, Ag, and Au) and Group 8–10 transition metal (Ru, Rh, Pd, Os, Ir, and Pt) surfaces. C–H as well as O–H bond activation over the metal proceeds via a classic oxidative addition type mechanism involving the insertion of the metal center into the C–H or O–H bond. O⁎ and OH⁎ assist C–H and O–H activation over particular Group 11 and Group 8–10 metal surfaces via a σ-bond metathesis type mechanism involving the oxidative addition of the C–H or O–H bond to the metal along with a reductive deprotonation of the acidic C–H and O–H bond over the M–O⁎ or M–OH⁎ site pair. The O⁎- and OH⁎-assisted C–H activation paths are energetically preferred over the direct metal catalyzed C–H scission for all Group 11 metals (Cu, Ag, and Au) with barriers that are 0.4–1.5 eV lower than those for the unassisted routes. The barriers for O⁎- and OH⁎-assisted C–H activation of CH4 on the Group 8–10 transition metals, however, are higher than those over the bare transition metal surfaces by as much as 1.4 eV. The C–H activation of adsorbed methyl species show very similar trends to those for CH4 despite the differences in structure between the weakly bound methane and the covalently adsorbed methyl intermediates. The activation of the O–H bond of methanol is significantly promoted by O⁎ as well as OH⁎ intermediates over both the Group 11 metals (Cu, Ag, and Au) as well as on all Group 8–10 metals studied (Ru, Rh, Pd, Os, Ir, and Pt). The O⁎- and OH⁎-assisted CH3O–H barriers are 0.6 to 2.0 eV lower than unassisted barriers, with the largest differences occurring on Group 11 metals. The higher degree of O⁎- and OH⁎-promotion in activating methanol over that in methane and methyl is due to the stronger interaction between the basic O⁎ and OH⁎ sites and the acidic proton in the O–H bond of methanol versus the non-acidic H in the C–H bond of methane. A detailed analysis of the binding energies and the charges for O⁎ and OH⁎ on different metal surfaces indicates that the marked differences in the properties and reactivity of O⁎ and OH⁎ between the Group 11 and Group 8–10 metals is due to the increased negative charge on the O-atoms (in O⁎ as well as OH⁎) bound to Group 11 metals. The promotional effects of O⁎ and OH⁎ are consistent with a proton-coupled electron transfer and the cooperative role of the metal-O⁎ or metal-OH⁎ pair in carrying out the oxidative addition and reductive deprotonation of the acidic C–H and O–H bonds. Ultimately, the ability of O⁎ or OH⁎ to act as a Brønsted base depends upon its charge, its binding energy on the metal surface (due to shifts in its position during X–H activation), and the acidity of the H-atom being abstracted." @default.
- W2278956420 created "2016-06-24" @default.
- W2278956420 creator A5002779860 @default.
- W2278956420 creator A5010884148 @default.
- W2278956420 date "2016-08-01" @default.
- W2278956420 modified "2023-10-04" @default.
- W2278956420 title "Promotional effects of chemisorbed oxygen and hydroxide in the activation of C–H and O–H bonds over transition metal surfaces" @default.
- W2278956420 cites W1513923893 @default.
- W2278956420 cites W1964450557 @default.
- W2278956420 cites W1966147240 @default.
- W2278956420 cites W1967065479 @default.
- W2278956420 cites W1968882562 @default.
- W2278956420 cites W1970127494 @default.
- W2278956420 cites W1972040015 @default.
- W2278956420 cites W1976205221 @default.
- W2278956420 cites W1976311025 @default.
- W2278956420 cites W1976784016 @default.
- W2278956420 cites W1981368803 @default.
- W2278956420 cites W1983335269 @default.
- W2278956420 cites W1983489943 @default.
- W2278956420 cites W1985355231 @default.
- W2278956420 cites W1986937179 @default.
- W2278956420 cites W1990944504 @default.
- W2278956420 cites W1991149034 @default.
- W2278956420 cites W1993127432 @default.
- W2278956420 cites W1995152244 @default.
- W2278956420 cites W1998768675 @default.
- W2278956420 cites W2000296776 @default.
- W2278956420 cites W2000892071 @default.
- W2278956420 cites W2001252917 @default.
- W2278956420 cites W2004751437 @default.
- W2278956420 cites W2005444902 @default.
- W2278956420 cites W2006783036 @default.
- W2278956420 cites W2007395042 @default.
- W2278956420 cites W2009404350 @default.
- W2278956420 cites W2009906868 @default.
- W2278956420 cites W2011159821 @default.
- W2278956420 cites W2014763261 @default.
- W2278956420 cites W2014907980 @default.
- W2278956420 cites W2017618268 @default.
- W2278956420 cites W2021360663 @default.
- W2278956420 cites W2022272063 @default.
- W2278956420 cites W2023330506 @default.
- W2278956420 cites W2027208134 @default.
- W2278956420 cites W2031430816 @default.
- W2278956420 cites W2033688683 @default.
- W2278956420 cites W2034330431 @default.
- W2278956420 cites W2034814506 @default.
- W2278956420 cites W2035142413 @default.
- W2278956420 cites W2035902790 @default.
- W2278956420 cites W2036113194 @default.
- W2278956420 cites W2037401791 @default.
- W2278956420 cites W2037841193 @default.
- W2278956420 cites W2044981224 @default.
- W2278956420 cites W2045958537 @default.
- W2278956420 cites W2046532782 @default.
- W2278956420 cites W2047524879 @default.
- W2278956420 cites W2050413419 @default.
- W2278956420 cites W2052423733 @default.
- W2278956420 cites W2058313703 @default.
- W2278956420 cites W2060805189 @default.
- W2278956420 cites W2066657180 @default.
- W2278956420 cites W2067075344 @default.
- W2278956420 cites W2068759861 @default.
- W2278956420 cites W2069046863 @default.
- W2278956420 cites W2070019211 @default.
- W2278956420 cites W2070239635 @default.
- W2278956420 cites W2070247802 @default.
- W2278956420 cites W2073435811 @default.
- W2278956420 cites W2079105963 @default.
- W2278956420 cites W2083222334 @default.
- W2278956420 cites W2085771849 @default.
- W2278956420 cites W2086330469 @default.
- W2278956420 cites W2087698390 @default.
- W2278956420 cites W2088190453 @default.
- W2278956420 cites W2094977330 @default.
- W2278956420 cites W2105564187 @default.
- W2278956420 cites W2136741165 @default.
- W2278956420 cites W2138234151 @default.
- W2278956420 cites W2138761745 @default.
- W2278956420 cites W2147200273 @default.
- W2278956420 cites W2150551170 @default.
- W2278956420 cites W2157513813 @default.
- W2278956420 cites W2168551294 @default.
- W2278956420 cites W2169649104 @default.
- W2278956420 cites W2169649657 @default.
- W2278956420 cites W2319706240 @default.
- W2278956420 cites W2327021968 @default.
- W2278956420 cites W2332714868 @default.
- W2278956420 cites W2506623636 @default.
- W2278956420 cites W2950870578 @default.
- W2278956420 cites W3005522966 @default.
- W2278956420 cites W4244812103 @default.
- W2278956420 doi "https://doi.org/10.1016/j.susc.2016.01.012" @default.
- W2278956420 hasPublicationYear "2016" @default.
- W2278956420 type Work @default.
- W2278956420 sameAs 2278956420 @default.
- W2278956420 citedByCount "54" @default.