Matches in SemOpenAlex for { <https://semopenalex.org/work/W2279189882> ?p ?o ?g. }
- W2279189882 endingPage "1550008" @default.
- W2279189882 startingPage "1550008" @default.
- W2279189882 abstract "In this study, an ensemble neural network is proposed based on different feature subsets method in order to forecast the world crude oil spot price. To this end, a number of experts in database gathering and appropriate time delays were interviewed to forecast 1-step ahead of the crude oil spot price. Subsequently, different features subsets were generated randomly, each of which was then used for each of the basic classifiers. Then, three-layered feed-forward neural network models were used to model each of the basic classifiers. Finally, the prediction results of all basic classifiers were combined with a single layer perceptron neural network to formulate an ensemble output for the original crude oil price series. In order to verify and evaluate the presented method, one of the main crude oil price series, i.e. WTI crude oil spot price, was used to test the effectiveness of the proposed method. Empirical results provided evidence for the effectiveness of the proposed ensemble learning method compared to linear and nonlinear models." @default.
- W2279189882 created "2016-06-24" @default.
- W2279189882 creator A5011832761 @default.
- W2279189882 creator A5069354005 @default.
- W2279189882 creator A5089351854 @default.
- W2279189882 date "2015-06-01" @default.
- W2279189882 modified "2023-09-26" @default.
- W2279189882 title "Forecasting crude oil price with ensemble neural networks based on different feature subsets method" @default.
- W2279189882 cites W126112123 @default.
- W2279189882 cites W1548831279 @default.
- W2279189882 cites W1572130091 @default.
- W2279189882 cites W1591584916 @default.
- W2279189882 cites W1971967963 @default.
- W2279189882 cites W1981584755 @default.
- W2279189882 cites W1984690644 @default.
- W2279189882 cites W1986478348 @default.
- W2279189882 cites W1988845048 @default.
- W2279189882 cites W1991645088 @default.
- W2279189882 cites W1992333588 @default.
- W2279189882 cites W1997522936 @default.
- W2279189882 cites W1997910282 @default.
- W2279189882 cites W1998334620 @default.
- W2279189882 cites W2002507495 @default.
- W2279189882 cites W2008416470 @default.
- W2279189882 cites W2020028537 @default.
- W2279189882 cites W2024285420 @default.
- W2279189882 cites W2028290323 @default.
- W2279189882 cites W2063711031 @default.
- W2279189882 cites W2073040595 @default.
- W2279189882 cites W2075081834 @default.
- W2279189882 cites W2075243656 @default.
- W2279189882 cites W2082635562 @default.
- W2279189882 cites W2089572977 @default.
- W2279189882 cites W2090791685 @default.
- W2279189882 cites W2092352683 @default.
- W2279189882 cites W2093704129 @default.
- W2279189882 cites W2096366126 @default.
- W2279189882 cites W2109094355 @default.
- W2279189882 cites W2109390841 @default.
- W2279189882 cites W2113242816 @default.
- W2279189882 cites W2135293965 @default.
- W2279189882 cites W2157124852 @default.
- W2279189882 cites W2167227211 @default.
- W2279189882 cites W3122018694 @default.
- W2279189882 cites W3125080556 @default.
- W2279189882 cites W4255949318 @default.
- W2279189882 doi "https://doi.org/10.1142/s2335680415500088" @default.
- W2279189882 hasPublicationYear "2015" @default.
- W2279189882 type Work @default.
- W2279189882 sameAs 2279189882 @default.
- W2279189882 citedByCount "3" @default.
- W2279189882 countsByYear W22791898822015 @default.
- W2279189882 countsByYear W22791898822019 @default.
- W2279189882 countsByYear W22791898822023 @default.
- W2279189882 crossrefType "journal-article" @default.
- W2279189882 hasAuthorship W2279189882A5011832761 @default.
- W2279189882 hasAuthorship W2279189882A5069354005 @default.
- W2279189882 hasAuthorship W2279189882A5089351854 @default.
- W2279189882 hasConcept C119857082 @default.
- W2279189882 hasConcept C127413603 @default.
- W2279189882 hasConcept C138885662 @default.
- W2279189882 hasConcept C153180895 @default.
- W2279189882 hasConcept C154945302 @default.
- W2279189882 hasConcept C2776401178 @default.
- W2279189882 hasConcept C2987168347 @default.
- W2279189882 hasConcept C41008148 @default.
- W2279189882 hasConcept C41895202 @default.
- W2279189882 hasConcept C50644808 @default.
- W2279189882 hasConcept C78762247 @default.
- W2279189882 hasConceptScore W2279189882C119857082 @default.
- W2279189882 hasConceptScore W2279189882C127413603 @default.
- W2279189882 hasConceptScore W2279189882C138885662 @default.
- W2279189882 hasConceptScore W2279189882C153180895 @default.
- W2279189882 hasConceptScore W2279189882C154945302 @default.
- W2279189882 hasConceptScore W2279189882C2776401178 @default.
- W2279189882 hasConceptScore W2279189882C2987168347 @default.
- W2279189882 hasConceptScore W2279189882C41008148 @default.
- W2279189882 hasConceptScore W2279189882C41895202 @default.
- W2279189882 hasConceptScore W2279189882C50644808 @default.
- W2279189882 hasConceptScore W2279189882C78762247 @default.
- W2279189882 hasIssue "02" @default.
- W2279189882 hasLocation W22791898821 @default.
- W2279189882 hasOpenAccess W2279189882 @default.
- W2279189882 hasPrimaryLocation W22791898821 @default.
- W2279189882 hasRelatedWork W2015538044 @default.
- W2279189882 hasRelatedWork W2016461833 @default.
- W2279189882 hasRelatedWork W2052253960 @default.
- W2279189882 hasRelatedWork W2147802381 @default.
- W2279189882 hasRelatedWork W2382607599 @default.
- W2279189882 hasRelatedWork W2760085659 @default.
- W2279189882 hasRelatedWork W2929240682 @default.
- W2279189882 hasRelatedWork W3197541072 @default.
- W2279189882 hasRelatedWork W1629725936 @default.
- W2279189882 hasRelatedWork W2480412556 @default.
- W2279189882 hasVolume "03" @default.
- W2279189882 isParatext "false" @default.
- W2279189882 isRetracted "false" @default.
- W2279189882 magId "2279189882" @default.