Matches in SemOpenAlex for { <https://semopenalex.org/work/W2279557293> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2279557293 abstract "Language evolution is shaped by the structure of the world: An iterated learning analysis Amy Perfors (amy.perfors@adelaide.edu.au) School of Psychology, University of Adelaide Daniel Navarro (daniel.navarro@adelaide.edu.au) School of Psychology, University of Adelaide Abstract Human languages vary in many ways, but also show strik- ing cross-linguistic universals. Why do these universals ex- ist? Recent theoretical results demonstrate that Bayesian learn- ers transmitting language to each other through iterated learn- ing will converge on a distribution of languages that depends only on their prior biases about language and the quantity of data transmitted at each point; the structure of the world being communicated about plays no role (Griffiths & Kalish, 2005, 2007). We revisit these findings and show that when certain as- sumptions about the independence of languages and the world are abandoned, learners will converge to languages that depend on the structure of the world as well as their prior biases. These theoretical results are supported with a series of experiments showing that when human learners acquire language through iterated learning, the ultimate structure of those languages is shaped by the structure of the meanings to be communicated. Keywords: language evolution; iterated learning; Bayesian modeling; linguistic structure Figure 1: (a) Schematic illustration of the typical iterated learning paradigm, which assumes that learner n acquires language on the basis of the language data produced by learner n − 1. (b) A dif- ferent view of iterated learning recognizes that because individuals produce language in order to communicate about the world, the data available to learners includes meanings in the world as well as the linguistic data produced by the learner before them. Introduction Human languages have rich structure on many levels, from phonology to semantics to grammar. Where does this struc- ture come from? Most researchers agree that linguistic struc- ture is shaped by the structure of our minds – that our brains contain prior biases that favor the acquisition or retention of some linguistic systems over others. As such, debate gen- erally centers around the nature and origin of these biases. Some suggest that the human language faculty is genetically specified, with natural selection operating on genes for lan- guage (e.g., Pinker & Bloom, 1990; Nowak, Komarova, & Niyogi, 2001; Komarova & Nowak, 2001) or else selecting for other capabilities (e.g., Hauser, Chomsky, & Fitch, 2002). Others have suggested that humans easily learn language not because of a language-specific genetically encoded mecha- nism, but because language evolved to be learnable and use- able by human brains (e.g. Zuidema, 2002; Brighton, Smith, & Kirby, 2005; Christiansen & Chater, 2008). While these accounts disagree in many particulars, they agree that the structure of language arises from the structure of the brain. In this paper we argue that language evolution is shaped by the structure of the world in addition to pre-existing cognitive biases. Because language involves communicating about the world, the structure of that world (i.e., the things to be com- municated) can interact with people’s prior biases to shape the languages that develop. We offer theoretical and exper- imental support of this proposition. On the theoretical side, we take as our starting point recent work within the “iterated learning” framework (in which new learners receive their data from previous learners). Previous research has shown that when learners are individually Bayesian, an iterated learning chain converges in the limit to the prior distribution over all possible languages (Griffiths & Kalish, 2005, 2007). How- ever, the proof of this assumes a priori that a language carries no assumptions about the frequencies of events in the world. As we will show, when this assumption is relaxed, the iterated learning process converges to a distribution that depends on the distribution of meaningful events in the world as well as the prior biases of the learner. We experimentally test these theoretical results in a lab-based iterated learning experiment (as in, e.g., Kirby, Cornish, & Smith, 2008) and find that par- ticipants converge on different languages depending on the structure of the space of meanings they are shown. Iterated learning The iterated learning modeling (ILM) framework is widely used in language evolution research (e.g., Kirby & Hurford, 2002; Griffiths & Kalish, 2007; Kirby et al., 2008; Smith, 2009; Reali & Griffiths, 2009). It views the process of lan- guage evolution in terms of a chain of learners (or genera- tions), shown schematically in Figure 1(a). The first learner in the chain sees some linguistic data (e.g., utterances), forms a hypothesis about what sort of language would have gener- ated that data, and then produces their own data, which serves as input to the next learner in the chain. Over time, the lan- guages that emerge from this process become non-arbitrary: Griffiths and Kalish (2005, 2007) (henceforth, GK) demon-" @default.
- W2279557293 created "2016-06-24" @default.
- W2279557293 creator A5045288622 @default.
- W2279557293 creator A5059022198 @default.
- W2279557293 date "2011-01-01" @default.
- W2279557293 modified "2023-09-23" @default.
- W2279557293 title "Language evolution is shaped by the structure of the world: An iterated learning analysis" @default.
- W2279557293 cites W1599925713 @default.
- W2279557293 cites W1607110231 @default.
- W2279557293 cites W1982374456 @default.
- W2279557293 cites W2002103405 @default.
- W2279557293 cites W2031463418 @default.
- W2279557293 cites W205699920 @default.
- W2279557293 cites W2079988037 @default.
- W2279557293 cites W2083568566 @default.
- W2279557293 cites W2091616445 @default.
- W2279557293 cites W2097988708 @default.
- W2279557293 cites W2099293539 @default.
- W2279557293 cites W2104563567 @default.
- W2279557293 cites W2120286686 @default.
- W2279557293 cites W2122401285 @default.
- W2279557293 cites W2126294040 @default.
- W2279557293 cites W2150961342 @default.
- W2279557293 cites W2152934953 @default.
- W2279557293 cites W2161288717 @default.
- W2279557293 cites W2161489197 @default.
- W2279557293 cites W2162471372 @default.
- W2279557293 cites W2165545766 @default.
- W2279557293 cites W2329445538 @default.
- W2279557293 cites W2781254848 @default.
- W2279557293 hasPublicationYear "2011" @default.
- W2279557293 type Work @default.
- W2279557293 sameAs 2279557293 @default.
- W2279557293 citedByCount "4" @default.
- W2279557293 countsByYear W22795572932014 @default.
- W2279557293 countsByYear W22795572932015 @default.
- W2279557293 countsByYear W22795572932016 @default.
- W2279557293 crossrefType "journal-article" @default.
- W2279557293 hasAuthorship W2279557293A5045288622 @default.
- W2279557293 hasAuthorship W2279557293A5059022198 @default.
- W2279557293 hasConcept C134306372 @default.
- W2279557293 hasConcept C138885662 @default.
- W2279557293 hasConcept C140479938 @default.
- W2279557293 hasConcept C153578388 @default.
- W2279557293 hasConcept C154945302 @default.
- W2279557293 hasConcept C16592111 @default.
- W2279557293 hasConcept C204321447 @default.
- W2279557293 hasConcept C33923547 @default.
- W2279557293 hasConcept C41008148 @default.
- W2279557293 hasConcept C41895202 @default.
- W2279557293 hasConcept C74672266 @default.
- W2279557293 hasConcept C79078291 @default.
- W2279557293 hasConceptScore W2279557293C134306372 @default.
- W2279557293 hasConceptScore W2279557293C138885662 @default.
- W2279557293 hasConceptScore W2279557293C140479938 @default.
- W2279557293 hasConceptScore W2279557293C153578388 @default.
- W2279557293 hasConceptScore W2279557293C154945302 @default.
- W2279557293 hasConceptScore W2279557293C16592111 @default.
- W2279557293 hasConceptScore W2279557293C204321447 @default.
- W2279557293 hasConceptScore W2279557293C33923547 @default.
- W2279557293 hasConceptScore W2279557293C41008148 @default.
- W2279557293 hasConceptScore W2279557293C41895202 @default.
- W2279557293 hasConceptScore W2279557293C74672266 @default.
- W2279557293 hasConceptScore W2279557293C79078291 @default.
- W2279557293 hasIssue "33" @default.
- W2279557293 hasLocation W22795572931 @default.
- W2279557293 hasOpenAccess W2279557293 @default.
- W2279557293 hasPrimaryLocation W22795572931 @default.
- W2279557293 hasRelatedWork W1499050190 @default.
- W2279557293 hasRelatedWork W1532366611 @default.
- W2279557293 hasRelatedWork W161837811 @default.
- W2279557293 hasRelatedWork W165330127 @default.
- W2279557293 hasRelatedWork W2096428472 @default.
- W2279557293 hasRelatedWork W2097481214 @default.
- W2279557293 hasRelatedWork W2140825133 @default.
- W2279557293 hasRelatedWork W2259044388 @default.
- W2279557293 hasRelatedWork W2401314204 @default.
- W2279557293 hasRelatedWork W2401823607 @default.
- W2279557293 hasRelatedWork W2504307124 @default.
- W2279557293 hasRelatedWork W2588887699 @default.
- W2279557293 hasRelatedWork W2769832894 @default.
- W2279557293 hasRelatedWork W2999978416 @default.
- W2279557293 hasRelatedWork W3001583739 @default.
- W2279557293 hasRelatedWork W30026100 @default.
- W2279557293 hasRelatedWork W37624210 @default.
- W2279557293 hasRelatedWork W58377777 @default.
- W2279557293 hasRelatedWork W818397476 @default.
- W2279557293 hasRelatedWork W2741441330 @default.
- W2279557293 hasVolume "33" @default.
- W2279557293 isParatext "false" @default.
- W2279557293 isRetracted "false" @default.
- W2279557293 magId "2279557293" @default.
- W2279557293 workType "article" @default.