Matches in SemOpenAlex for { <https://semopenalex.org/work/W2279691757> ?p ?o ?g. }
- W2279691757 abstract "There is a need to improve prediction of response to chemotherapy in breast cancer in order to improve clinical management and this may be achieved by harnessing computational metrics of tissue pathology. We investigated the association between quantitative image metrics derived from computational analysis of digital pathology slides and response to chemotherapy in women with breast cancer who received neoadjuvant chemotherapy. We digitised tissue sections of both diagnostic and surgical samples of breast tumours from 768 patients enrolled in the Neo-tAnGo randomized controlled trial. We subjected digital images to systematic analysis optimised for detection of single cells. Machine-learning methods were used to classify cells as cancer, stromal or lymphocyte and we computed estimates of absolute numbers, relative fractions and cell densities using these data. Pathological complete response (pCR), a histological indicator of chemotherapy response, was the primary endpoint. Fifteen image metrics were tested for their association with pCR using univariate and multivariate logistic regression. Median lymphocyte density proved most strongly associated with pCR on univariate analysis (OR 4.46, 95 % CI 2.34-8.50, p < 0.0001; observations = 614) and on multivariate analysis (OR 2.42, 95 % CI 1.08-5.40, p = 0.03; observations = 406) after adjustment for clinical factors. Further exploratory analyses revealed that in approximately one quarter of cases there was an increase in lymphocyte density in the tumour removed at surgery compared to diagnostic biopsies. A reduction in lymphocyte density at surgery was strongly associated with pCR (OR 0.28, 95 % CI 0.17-0.47, p < 0.0001; observations = 553). A data-driven analysis of computational pathology reveals lymphocyte density as an independent predictor of pCR. Paradoxically an increase in lymphocyte density, following exposure to chemotherapy, is associated with a lack of pCR. Computational pathology can provide objective, quantitative and reproducible tissue metrics and represents a viable means of outcome prediction in breast cancer. ClinicalTrials.gov NCT00070278 ; 03/10/2003" @default.
- W2279691757 created "2016-06-24" @default.
- W2279691757 creator A5007341153 @default.
- W2279691757 creator A5015415304 @default.
- W2279691757 creator A5020951239 @default.
- W2279691757 creator A5026610840 @default.
- W2279691757 creator A5027160662 @default.
- W2279691757 creator A5028914408 @default.
- W2279691757 creator A5032579569 @default.
- W2279691757 creator A5035293802 @default.
- W2279691757 creator A5041163775 @default.
- W2279691757 creator A5049067083 @default.
- W2279691757 creator A5051958636 @default.
- W2279691757 creator A5062875195 @default.
- W2279691757 creator A5065346852 @default.
- W2279691757 creator A5070311236 @default.
- W2279691757 creator A5070581787 @default.
- W2279691757 creator A5076118281 @default.
- W2279691757 creator A5083306545 @default.
- W2279691757 creator A5088178921 @default.
- W2279691757 creator A5091704063 @default.
- W2279691757 date "2016-02-16" @default.
- W2279691757 modified "2023-10-09" @default.
- W2279691757 title "Computational pathology of pre-treatment biopsies identifies lymphocyte density as a predictor of response to neoadjuvant chemotherapy in breast cancer" @default.
- W2279691757 cites W1971208896 @default.
- W2279691757 cites W1987206765 @default.
- W2279691757 cites W2004377796 @default.
- W2279691757 cites W2004742583 @default.
- W2279691757 cites W2005895632 @default.
- W2279691757 cites W2009098155 @default.
- W2279691757 cites W2012034410 @default.
- W2279691757 cites W2017999136 @default.
- W2279691757 cites W2028433016 @default.
- W2279691757 cites W2048059530 @default.
- W2279691757 cites W2048997901 @default.
- W2279691757 cites W2050594705 @default.
- W2279691757 cites W2053074390 @default.
- W2279691757 cites W2075894019 @default.
- W2279691757 cites W2076976284 @default.
- W2279691757 cites W2081796577 @default.
- W2279691757 cites W2098683355 @default.
- W2279691757 cites W2106610495 @default.
- W2279691757 cites W2109269939 @default.
- W2279691757 cites W2110243528 @default.
- W2279691757 cites W2112648444 @default.
- W2279691757 cites W2113587151 @default.
- W2279691757 cites W2114886164 @default.
- W2279691757 cites W2120431466 @default.
- W2279691757 cites W2120605054 @default.
- W2279691757 cites W2124427232 @default.
- W2279691757 cites W2125885282 @default.
- W2279691757 cites W2134878729 @default.
- W2279691757 cites W2150461375 @default.
- W2279691757 cites W2157058802 @default.
- W2279691757 cites W2158501247 @default.
- W2279691757 cites W2158545805 @default.
- W2279691757 cites W2160046825 @default.
- W2279691757 cites W2162376722 @default.
- W2279691757 cites W2163871197 @default.
- W2279691757 doi "https://doi.org/10.1186/s13058-016-0682-8" @default.
- W2279691757 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4755003" @default.
- W2279691757 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26882907" @default.
- W2279691757 hasPublicationYear "2016" @default.
- W2279691757 type Work @default.
- W2279691757 sameAs 2279691757 @default.
- W2279691757 citedByCount "66" @default.
- W2279691757 countsByYear W22796917572016 @default.
- W2279691757 countsByYear W22796917572017 @default.
- W2279691757 countsByYear W22796917572018 @default.
- W2279691757 countsByYear W22796917572019 @default.
- W2279691757 countsByYear W22796917572020 @default.
- W2279691757 countsByYear W22796917572021 @default.
- W2279691757 countsByYear W22796917572022 @default.
- W2279691757 countsByYear W22796917572023 @default.
- W2279691757 crossrefType "journal-article" @default.
- W2279691757 hasAuthorship W2279691757A5007341153 @default.
- W2279691757 hasAuthorship W2279691757A5015415304 @default.
- W2279691757 hasAuthorship W2279691757A5020951239 @default.
- W2279691757 hasAuthorship W2279691757A5026610840 @default.
- W2279691757 hasAuthorship W2279691757A5027160662 @default.
- W2279691757 hasAuthorship W2279691757A5028914408 @default.
- W2279691757 hasAuthorship W2279691757A5032579569 @default.
- W2279691757 hasAuthorship W2279691757A5035293802 @default.
- W2279691757 hasAuthorship W2279691757A5041163775 @default.
- W2279691757 hasAuthorship W2279691757A5049067083 @default.
- W2279691757 hasAuthorship W2279691757A5051958636 @default.
- W2279691757 hasAuthorship W2279691757A5062875195 @default.
- W2279691757 hasAuthorship W2279691757A5065346852 @default.
- W2279691757 hasAuthorship W2279691757A5070311236 @default.
- W2279691757 hasAuthorship W2279691757A5070581787 @default.
- W2279691757 hasAuthorship W2279691757A5076118281 @default.
- W2279691757 hasAuthorship W2279691757A5083306545 @default.
- W2279691757 hasAuthorship W2279691757A5088178921 @default.
- W2279691757 hasAuthorship W2279691757A5091704063 @default.
- W2279691757 hasBestOaLocation W22796917571 @default.
- W2279691757 hasConcept C105795698 @default.
- W2279691757 hasConcept C121608353 @default.
- W2279691757 hasConcept C126322002 @default.
- W2279691757 hasConcept C126838900 @default.
- W2279691757 hasConcept C142724271 @default.