Matches in SemOpenAlex for { <https://semopenalex.org/work/W2279770918> ?p ?o ?g. }
- W2279770918 endingPage "28" @default.
- W2279770918 startingPage "25" @default.
- W2279770918 abstract "In the talk, we shall discuss quality measures for hash functions usedin data structures and algorithms, and survey positive and negativeresults. (This talk is not about cryptographic hash functions.)For the analysis of algorithms involving hash functions, it is oftenconvenient to assume the hash functions used behave fully randomly; insome cases there is no analysis known that avoids this assumption. Inpractice, one needs to get by with weaker hash functions that can begenerated by randomized algorithms. A well-studied range of applications concern realizations of dynamic dictionaries (linearprobing, chained hashing, dynamic perfect hashing, cuckoo hashing andits generalizations) or Bloom filters and their variants.A particularly successful and useful means of classification areCarter and Wegman's universal or k-wise independent classes,introduced in 1977. A natural and widely used approach to analyzingan algorithm involving hash functions is to show that it works if asufficiently strong universal class of hash functions is used, and tosubstitute one of the known constructions of such classes. Thisinvites research into the question of just how much independence inthe hash functions is necessary for an algorithm to work. Some recentanalyses that gave impossibility results constructed rather artificialclasses that would not work; other results pointed out natural, widelyused hash classes that would not work in a particular application.Only recently it was shown that under certain assumptions on someentropy present in the set of keys even 2-wise independent hashclasses will lead to strong randomness properties in the hash values.The negative results show that these results may not be taken asjustification for using weak hash classes indiscriminately, inparticular for key sets with structure.When stronger independence properties are needed for a theoreticalanalysis, one may resort to classic constructions. Only in 2003 itwas found out how full randomness can be simulated using only linearspace overhead (which is optimal). The split-and-share approachcan be used to justify the full randomness assumption in somesituations in which full randomness is needed for the analysis to gothrough, like in many applications involving multiple hash functions(e.g., generalized versions of cuckoo hashing with multiple hashfunctions or larger bucket sizes, load balancing, Bloom filters andvariants, or minimal perfect hash function constructions).For practice, efficiency considerations beyond constant factors areimportant. It is not hard to construct very efficient 2-wiseindependent classes. Using k-wise independent classes for constant kbigger than 3 has become feasible in practice only by newconstructions involving tabulation. This goes together well with thequite new result that linear probing works with 5-independent hashfunctions.Recent developments suggest that the classification of hash functionconstructions by their degree of independence alone may not beadequate in some cases. Thus, one may want to analyze the behavior ofspecific hash classes in specific applications, circumventing theconcept of k-wise independence. Several such results were recentlyachieved concerning hash functions that utilize tabulation. Inparticular if the analysis of the application involves usingrandomness properties in graphs and hypergraphs (generalized cuckoohashing, also in the version with a stash, or load balancing), ahash class combining k-wise independence with tabulation has turnedout to be very powerful." @default.
- W2279770918 created "2016-06-24" @default.
- W2279770918 creator A5067257613 @default.
- W2279770918 date "2012-02-29" @default.
- W2279770918 modified "2023-09-28" @default.
- W2279770918 title "On Randomness in Hash Functions (Invited Talk)." @default.
- W2279770918 cites W104648112 @default.
- W2279770918 cites W1501716409 @default.
- W2279770918 cites W1514336682 @default.
- W2279770918 cites W1524890935 @default.
- W2279770918 cites W1528625750 @default.
- W2279770918 cites W1541806040 @default.
- W2279770918 cites W1546441687 @default.
- W2279770918 cites W1551533237 @default.
- W2279770918 cites W1576564521 @default.
- W2279770918 cites W1781587470 @default.
- W2279770918 cites W1843221757 @default.
- W2279770918 cites W1851100088 @default.
- W2279770918 cites W1891810191 @default.
- W2279770918 cites W1945549020 @default.
- W2279770918 cites W1972998039 @default.
- W2279770918 cites W1979795732 @default.
- W2279770918 cites W1982689753 @default.
- W2279770918 cites W1985623009 @default.
- W2279770918 cites W1993217935 @default.
- W2279770918 cites W1993284846 @default.
- W2279770918 cites W200648432 @default.
- W2279770918 cites W2008159222 @default.
- W2279770918 cites W2008159385 @default.
- W2279770918 cites W2014586253 @default.
- W2279770918 cites W2016635557 @default.
- W2279770918 cites W2026784425 @default.
- W2279770918 cites W2034389879 @default.
- W2279770918 cites W2037514418 @default.
- W2279770918 cites W2039852170 @default.
- W2279770918 cites W2040401241 @default.
- W2279770918 cites W2052207834 @default.
- W2279770918 cites W2052719937 @default.
- W2279770918 cites W2059271645 @default.
- W2279770918 cites W2061468734 @default.
- W2279770918 cites W2071179368 @default.
- W2279770918 cites W2077229436 @default.
- W2279770918 cites W2117197324 @default.
- W2279770918 cites W2119574607 @default.
- W2279770918 cites W2123845384 @default.
- W2279770918 cites W2136399778 @default.
- W2279770918 cites W2138593246 @default.
- W2279770918 cites W2144399314 @default.
- W2279770918 cites W2163137752 @default.
- W2279770918 cites W2166542473 @default.
- W2279770918 cites W2216427709 @default.
- W2279770918 cites W2338671350 @default.
- W2279770918 cites W25594804 @default.
- W2279770918 cites W2912437396 @default.
- W2279770918 cites W2912601938 @default.
- W2279770918 cites W2949514071 @default.
- W2279770918 cites W2951111027 @default.
- W2279770918 cites W3198160809 @default.
- W2279770918 cites W330523037 @default.
- W2279770918 cites W62638829 @default.
- W2279770918 cites W63436842 @default.
- W2279770918 doi "https://doi.org/10.4230/lipics.stacs.2012.25" @default.
- W2279770918 hasPublicationYear "2012" @default.
- W2279770918 type Work @default.
- W2279770918 sameAs 2279770918 @default.
- W2279770918 citedByCount "7" @default.
- W2279770918 countsByYear W22797709182014 @default.
- W2279770918 countsByYear W22797709182015 @default.
- W2279770918 countsByYear W22797709182016 @default.
- W2279770918 countsByYear W22797709182017 @default.
- W2279770918 countsByYear W22797709182019 @default.
- W2279770918 countsByYear W22797709182020 @default.
- W2279770918 crossrefType "proceedings-article" @default.
- W2279770918 hasAuthorship W2279770918A5067257613 @default.
- W2279770918 hasConcept C108546238 @default.
- W2279770918 hasConcept C11413529 @default.
- W2279770918 hasConcept C116058348 @default.
- W2279770918 hasConcept C122907437 @default.
- W2279770918 hasConcept C135783594 @default.
- W2279770918 hasConcept C138111711 @default.
- W2279770918 hasConcept C17744445 @default.
- W2279770918 hasConcept C187062812 @default.
- W2279770918 hasConcept C190157925 @default.
- W2279770918 hasConcept C199539241 @default.
- W2279770918 hasConcept C27353603 @default.
- W2279770918 hasConcept C2776261394 @default.
- W2279770918 hasConcept C33923547 @default.
- W2279770918 hasConcept C38652104 @default.
- W2279770918 hasConcept C41008148 @default.
- W2279770918 hasConcept C67388219 @default.
- W2279770918 hasConcept C80444323 @default.
- W2279770918 hasConcept C99138194 @default.
- W2279770918 hasConceptScore W2279770918C108546238 @default.
- W2279770918 hasConceptScore W2279770918C11413529 @default.
- W2279770918 hasConceptScore W2279770918C116058348 @default.
- W2279770918 hasConceptScore W2279770918C122907437 @default.
- W2279770918 hasConceptScore W2279770918C135783594 @default.
- W2279770918 hasConceptScore W2279770918C138111711 @default.