Matches in SemOpenAlex for { <https://semopenalex.org/work/W2279894747> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2279894747 endingPage "014003" @default.
- W2279894747 startingPage "014003" @default.
- W2279894747 abstract "We propose an active learning (AL) approach for prostate segmentation from magnetic resonance images. Our label query strategy is inspired from the principles of visual saliency that have similar considerations for choosing the most salient region. These similarities are encoded in a graph using classification maps and low-level features. Random walks are used to identify the most informative node, which is equivalent to the label query sample in AL. To reduce computation time, a volume of interest (VOI) is identified and all subsequent analysis, such as probability map generation using semisupervised random forest classifiers and label query, is restricted to this VOI. The negative log-likelihood of the probability maps serves as the penalty cost in a second-order Markov random field cost function, which is optimized using graph cuts for prostate segmentation. Experimental results on the Medical Image Computing and Computer Assisted Intervention (MICCAI) 2012 prostate segmentation challenge show the superior performance of our approach to conventional methods using fully supervised learning." @default.
- W2279894747 created "2016-06-24" @default.
- W2279894747 creator A5038199211 @default.
- W2279894747 creator A5078933997 @default.
- W2279894747 date "2016-02-19" @default.
- W2279894747 modified "2023-10-01" @default.
- W2279894747 title "Visual saliency-based active learning for prostate magnetic resonance imaging segmentation" @default.
- W2279894747 cites W1589990798 @default.
- W2279894747 cites W1980913318 @default.
- W2279894747 cites W1991135330 @default.
- W2279894747 cites W2005129295 @default.
- W2279894747 cites W2045390724 @default.
- W2279894747 cites W2052617496 @default.
- W2279894747 cites W2053890719 @default.
- W2279894747 cites W2065875833 @default.
- W2279894747 cites W2088339151 @default.
- W2279894747 cites W2106033751 @default.
- W2279894747 cites W2132116135 @default.
- W2279894747 cites W2159037096 @default.
- W2279894747 cites W2169197685 @default.
- W2279894747 cites W2211483859 @default.
- W2279894747 cites W2214908323 @default.
- W2279894747 doi "https://doi.org/10.1117/1.jmi.3.1.014003" @default.
- W2279894747 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4760358" @default.
- W2279894747 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26958579" @default.
- W2279894747 hasPublicationYear "2016" @default.
- W2279894747 type Work @default.
- W2279894747 sameAs 2279894747 @default.
- W2279894747 citedByCount "10" @default.
- W2279894747 countsByYear W22798947472016 @default.
- W2279894747 countsByYear W22798947472017 @default.
- W2279894747 countsByYear W22798947472018 @default.
- W2279894747 countsByYear W22798947472022 @default.
- W2279894747 countsByYear W22798947472023 @default.
- W2279894747 crossrefType "journal-article" @default.
- W2279894747 hasAuthorship W2279894747A5038199211 @default.
- W2279894747 hasAuthorship W2279894747A5078933997 @default.
- W2279894747 hasBestOaLocation W22798947472 @default.
- W2279894747 hasConcept C119857082 @default.
- W2279894747 hasConcept C124504099 @default.
- W2279894747 hasConcept C132525143 @default.
- W2279894747 hasConcept C153180895 @default.
- W2279894747 hasConcept C154945302 @default.
- W2279894747 hasConcept C169258074 @default.
- W2279894747 hasConcept C2778045648 @default.
- W2279894747 hasConcept C31601959 @default.
- W2279894747 hasConcept C41008148 @default.
- W2279894747 hasConcept C5134670 @default.
- W2279894747 hasConcept C71924100 @default.
- W2279894747 hasConcept C80444323 @default.
- W2279894747 hasConcept C89600930 @default.
- W2279894747 hasConcept C98763669 @default.
- W2279894747 hasConceptScore W2279894747C119857082 @default.
- W2279894747 hasConceptScore W2279894747C124504099 @default.
- W2279894747 hasConceptScore W2279894747C132525143 @default.
- W2279894747 hasConceptScore W2279894747C153180895 @default.
- W2279894747 hasConceptScore W2279894747C154945302 @default.
- W2279894747 hasConceptScore W2279894747C169258074 @default.
- W2279894747 hasConceptScore W2279894747C2778045648 @default.
- W2279894747 hasConceptScore W2279894747C31601959 @default.
- W2279894747 hasConceptScore W2279894747C41008148 @default.
- W2279894747 hasConceptScore W2279894747C5134670 @default.
- W2279894747 hasConceptScore W2279894747C71924100 @default.
- W2279894747 hasConceptScore W2279894747C80444323 @default.
- W2279894747 hasConceptScore W2279894747C89600930 @default.
- W2279894747 hasConceptScore W2279894747C98763669 @default.
- W2279894747 hasIssue "1" @default.
- W2279894747 hasLocation W22798947471 @default.
- W2279894747 hasLocation W22798947472 @default.
- W2279894747 hasLocation W22798947473 @default.
- W2279894747 hasLocation W22798947474 @default.
- W2279894747 hasOpenAccess W2279894747 @default.
- W2279894747 hasPrimaryLocation W22798947471 @default.
- W2279894747 hasRelatedWork W1675950995 @default.
- W2279894747 hasRelatedWork W2070570813 @default.
- W2279894747 hasRelatedWork W2085626452 @default.
- W2279894747 hasRelatedWork W2112454231 @default.
- W2279894747 hasRelatedWork W2149623758 @default.
- W2279894747 hasRelatedWork W2161122075 @default.
- W2279894747 hasRelatedWork W2464972745 @default.
- W2279894747 hasRelatedWork W29916882 @default.
- W2279894747 hasRelatedWork W4308191010 @default.
- W2279894747 hasRelatedWork W4323021782 @default.
- W2279894747 hasVolume "3" @default.
- W2279894747 isParatext "false" @default.
- W2279894747 isRetracted "false" @default.
- W2279894747 magId "2279894747" @default.
- W2279894747 workType "article" @default.