Matches in SemOpenAlex for { <https://semopenalex.org/work/W2280019119> ?p ?o ?g. }
- W2280019119 abstract "In this paper, we construct a new class of black hole solutions which is coupled to the logarithmic nonlinear electrodynamics in the context of dilaton gravity. We consider an $n$-dimensional action in which gravity is coupled to the logarithmic nonlinear electrodynamics field and a scalar dilaton field to obtain the equations of motion of the gravitational, dilaton and electromagnetic fields. This leads to finding a new class of $n$-dimensional static and spherically symmetric black hole solutions in the presence of two Liouville-type dilaton potentials. The asymptotic behavior of these solutions is neither flat nor (anti-)de Sitter [(A)dS], and in the limiting case where the nonlinear parameter $ensuremath{beta}$ goes to infinity, our solutions reduce to the black holes of Einstein-Maxwell-dilaton gravity in higher dimensions. Thermodynamic quantities such as mass, temperature, electric potential and entropy are also computed, and it is shown that they agree with the first law of thermodynamics. Furthermore, we find that for small values of the electric charge parameter $q$, and the dilaton coupling constant $ensuremath{alpha}$, as well as small dimension $n$, the solutions are thermally stable. By increasing $n$, the region of stability stands for smaller values of $ensuremath{alpha}$ independent of $q$. Finally, we use the method of thermodynamical geometry and find the phase transition points by calculating the Ricci scalar of a thermodynamic metric." @default.
- W2280019119 created "2016-06-24" @default.
- W2280019119 creator A5036596889 @default.
- W2280019119 creator A5052082506 @default.
- W2280019119 creator A5064548266 @default.
- W2280019119 date "2015-12-23" @default.
- W2280019119 modified "2023-09-24" @default.
- W2280019119 title "Thermodynamic geometry and thermal stability ofn-dimensional dilaton black holes in the presence of logarithmic nonlinear electrodynamics" @default.
- W2280019119 cites W1570171322 @default.
- W2280019119 cites W172919792 @default.
- W2280019119 cites W1889142700 @default.
- W2280019119 cites W1951446624 @default.
- W2280019119 cites W1983042104 @default.
- W2280019119 cites W1984443269 @default.
- W2280019119 cites W1988608998 @default.
- W2280019119 cites W1989081212 @default.
- W2280019119 cites W1990461810 @default.
- W2280019119 cites W1997771574 @default.
- W2280019119 cites W1999913414 @default.
- W2280019119 cites W2004245415 @default.
- W2280019119 cites W2005365842 @default.
- W2280019119 cites W2013947791 @default.
- W2280019119 cites W2014616874 @default.
- W2280019119 cites W2018728940 @default.
- W2280019119 cites W2020949575 @default.
- W2280019119 cites W2021561029 @default.
- W2280019119 cites W2024833547 @default.
- W2280019119 cites W2026999448 @default.
- W2280019119 cites W2028485467 @default.
- W2280019119 cites W2033974416 @default.
- W2280019119 cites W2035382950 @default.
- W2280019119 cites W2037672725 @default.
- W2280019119 cites W2039117838 @default.
- W2280019119 cites W2044115605 @default.
- W2280019119 cites W2049433332 @default.
- W2280019119 cites W2049546154 @default.
- W2280019119 cites W2051652097 @default.
- W2280019119 cites W2059206957 @default.
- W2280019119 cites W2059541279 @default.
- W2280019119 cites W2059833305 @default.
- W2280019119 cites W2062636735 @default.
- W2280019119 cites W2064147694 @default.
- W2280019119 cites W2064777467 @default.
- W2280019119 cites W2065805883 @default.
- W2280019119 cites W2067230672 @default.
- W2280019119 cites W2067594043 @default.
- W2280019119 cites W2068728923 @default.
- W2280019119 cites W2068881685 @default.
- W2280019119 cites W2069629855 @default.
- W2280019119 cites W2075531644 @default.
- W2280019119 cites W2077085908 @default.
- W2280019119 cites W2082707320 @default.
- W2280019119 cites W2083213127 @default.
- W2280019119 cites W2092278675 @default.
- W2280019119 cites W2099204364 @default.
- W2280019119 cites W2106704391 @default.
- W2280019119 cites W2107240173 @default.
- W2280019119 cites W2114090383 @default.
- W2280019119 cites W2120830691 @default.
- W2280019119 cites W2123670007 @default.
- W2280019119 cites W2125718819 @default.
- W2280019119 cites W2137355939 @default.
- W2280019119 cites W2139496359 @default.
- W2280019119 cites W2139597777 @default.
- W2280019119 cites W2146478425 @default.
- W2280019119 cites W2154806071 @default.
- W2280019119 cites W2162590803 @default.
- W2280019119 cites W2261809505 @default.
- W2280019119 cites W2567441220 @default.
- W2280019119 cites W2594235370 @default.
- W2280019119 cites W3097984739 @default.
- W2280019119 cites W3098063661 @default.
- W2280019119 cites W3098277821 @default.
- W2280019119 cites W3098384847 @default.
- W2280019119 cites W3100938138 @default.
- W2280019119 cites W3103296943 @default.
- W2280019119 cites W3104621267 @default.
- W2280019119 cites W3104769264 @default.
- W2280019119 cites W3104828006 @default.
- W2280019119 cites W3125522436 @default.
- W2280019119 cites W4249327119 @default.
- W2280019119 cites W4249956767 @default.
- W2280019119 cites W637776930 @default.
- W2280019119 doi "https://doi.org/10.1103/physrevd.92.124054" @default.
- W2280019119 hasPublicationYear "2015" @default.
- W2280019119 type Work @default.
- W2280019119 sameAs 2280019119 @default.
- W2280019119 citedByCount "12" @default.
- W2280019119 countsByYear W22800191192016 @default.
- W2280019119 countsByYear W22800191192017 @default.
- W2280019119 countsByYear W22800191192019 @default.
- W2280019119 countsByYear W22800191192020 @default.
- W2280019119 countsByYear W22800191192021 @default.
- W2280019119 countsByYear W22800191192022 @default.
- W2280019119 crossrefType "journal-article" @default.
- W2280019119 hasAuthorship W2280019119A5036596889 @default.
- W2280019119 hasAuthorship W2280019119A5052082506 @default.
- W2280019119 hasAuthorship W2280019119A5064548266 @default.
- W2280019119 hasConcept C112972136 @default.
- W2280019119 hasConcept C119857082 @default.