Matches in SemOpenAlex for { <https://semopenalex.org/work/W2280491004> ?p ?o ?g. }
- W2280491004 abstract "Recent growing interest for location-based services has created a demand on object localisation approaches with low cost and high accuracy. In this study, the problem of distributed multi-object localisation using fingerprints of received signal strength (RSS) is addressed by combining average consensus and compressed sensing. First, Bayesian compressed sensing is employed at each agent to recover the sparse index vector from RSS measurements, which are corrupted by noises. It relaxes the requirement on accurate prior position knowledge of beacon nodes and is applicable in non-line-of-sight conditions. Then, average consensus is adopted to compel all agents to reach an agreement on the index vector, and in turn, on the location of objects. By using only one-hop neighbours’ information, the proposed distributed localisation method is applicable to large-scale networks. Moreover, the final location of each object is obtainable from each individual agent, which makes the proposed method flexible to the network administration. Experimental results are included to demonstrate the effectiveness of the proposed method." @default.
- W2280491004 created "2016-06-24" @default.
- W2280491004 creator A5000687523 @default.
- W2280491004 creator A5039458023 @default.
- W2280491004 creator A5040846880 @default.
- W2280491004 creator A5041170371 @default.
- W2280491004 date "2015-09-01" @default.
- W2280491004 modified "2023-10-17" @default.
- W2280491004 title "Distributed multi‐object localisation by consensus on compressive sampling received signal strength fingerprints" @default.
- W2280491004 cites W1976800333 @default.
- W2280491004 cites W1984398840 @default.
- W2280491004 cites W1988421993 @default.
- W2280491004 cites W2000204458 @default.
- W2280491004 cites W2006805041 @default.
- W2280491004 cites W2007892693 @default.
- W2280491004 cites W2011502582 @default.
- W2280491004 cites W2014688140 @default.
- W2280491004 cites W2024718391 @default.
- W2280491004 cites W2025677515 @default.
- W2280491004 cites W2029080014 @default.
- W2280491004 cites W2050386482 @default.
- W2280491004 cites W2054799039 @default.
- W2280491004 cites W2055944149 @default.
- W2280491004 cites W2065513175 @default.
- W2280491004 cites W2071284784 @default.
- W2280491004 cites W2085762843 @default.
- W2280491004 cites W2095421215 @default.
- W2280491004 cites W2096714297 @default.
- W2280491004 cites W2099175737 @default.
- W2280491004 cites W2100989187 @default.
- W2280491004 cites W2107396783 @default.
- W2280491004 cites W2108482152 @default.
- W2280491004 cites W2119667497 @default.
- W2280491004 cites W2124216931 @default.
- W2280491004 cites W2133874683 @default.
- W2280491004 cites W2133940231 @default.
- W2280491004 cites W2144723957 @default.
- W2280491004 cites W2147638685 @default.
- W2280491004 cites W2150843948 @default.
- W2280491004 cites W2158064355 @default.
- W2280491004 cites W2159717626 @default.
- W2280491004 cites W2167142780 @default.
- W2280491004 cites W2167696602 @default.
- W2280491004 cites W4232632925 @default.
- W2280491004 cites W4238591275 @default.
- W2280491004 cites W4250955649 @default.
- W2280491004 cites W595252221 @default.
- W2280491004 cites W1976830740 @default.
- W2280491004 doi "https://doi.org/10.1049/iet-com.2014.1155" @default.
- W2280491004 hasPublicationYear "2015" @default.
- W2280491004 type Work @default.
- W2280491004 sameAs 2280491004 @default.
- W2280491004 citedByCount "8" @default.
- W2280491004 countsByYear W22804910042017 @default.
- W2280491004 countsByYear W22804910042018 @default.
- W2280491004 countsByYear W22804910042021 @default.
- W2280491004 crossrefType "journal-article" @default.
- W2280491004 hasAuthorship W2280491004A5000687523 @default.
- W2280491004 hasAuthorship W2280491004A5039458023 @default.
- W2280491004 hasAuthorship W2280491004A5040846880 @default.
- W2280491004 hasAuthorship W2280491004A5041170371 @default.
- W2280491004 hasConcept C10138342 @default.
- W2280491004 hasConcept C111919701 @default.
- W2280491004 hasConcept C124101348 @default.
- W2280491004 hasConcept C124851039 @default.
- W2280491004 hasConcept C14279187 @default.
- W2280491004 hasConcept C153180895 @default.
- W2280491004 hasConcept C154945302 @default.
- W2280491004 hasConcept C162324750 @default.
- W2280491004 hasConcept C176808163 @default.
- W2280491004 hasConcept C198082294 @default.
- W2280491004 hasConcept C2385561 @default.
- W2280491004 hasConcept C24590314 @default.
- W2280491004 hasConcept C2781238097 @default.
- W2280491004 hasConcept C31258907 @default.
- W2280491004 hasConcept C31972630 @default.
- W2280491004 hasConcept C41008148 @default.
- W2280491004 hasConcept C60229501 @default.
- W2280491004 hasConcept C76155785 @default.
- W2280491004 hasConcept C79403827 @default.
- W2280491004 hasConceptScore W2280491004C10138342 @default.
- W2280491004 hasConceptScore W2280491004C111919701 @default.
- W2280491004 hasConceptScore W2280491004C124101348 @default.
- W2280491004 hasConceptScore W2280491004C124851039 @default.
- W2280491004 hasConceptScore W2280491004C14279187 @default.
- W2280491004 hasConceptScore W2280491004C153180895 @default.
- W2280491004 hasConceptScore W2280491004C154945302 @default.
- W2280491004 hasConceptScore W2280491004C162324750 @default.
- W2280491004 hasConceptScore W2280491004C176808163 @default.
- W2280491004 hasConceptScore W2280491004C198082294 @default.
- W2280491004 hasConceptScore W2280491004C2385561 @default.
- W2280491004 hasConceptScore W2280491004C24590314 @default.
- W2280491004 hasConceptScore W2280491004C2781238097 @default.
- W2280491004 hasConceptScore W2280491004C31258907 @default.
- W2280491004 hasConceptScore W2280491004C31972630 @default.
- W2280491004 hasConceptScore W2280491004C41008148 @default.
- W2280491004 hasConceptScore W2280491004C60229501 @default.
- W2280491004 hasConceptScore W2280491004C76155785 @default.
- W2280491004 hasConceptScore W2280491004C79403827 @default.
- W2280491004 hasFunder F4320321001 @default.