Matches in SemOpenAlex for { <https://semopenalex.org/work/W2280493569> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2280493569 abstract "Standard prospective logistic regression analysis of case-control data often leads to very imprecise estimates of gene-environment interactions due to small numbers of cases or controls in cells of crossing genotype and exposure. In contrast, modern “retrospective” methods, including the celebrated “case-only” approach, can estimate the interaction parameters much more precisely, but they can be seriously biased when the underlying assumption of gene-environment independence is violated. In this article, we propose a novel approach to analyze case-control data that can relax the gene-environment independence assumption using an empirical Bayes (EB) framework. In the special case, involving a binary gene and a binary exposure, the framework leads to an estimator of the odds-ratio interaction parameter in a simple closed form that corresponds to an weighted average of the standard case-only and case-control estimators. We also describe a general approach for deriving the EB estimator and its variances within the retrospective maximum-likelihood framework developed by Chatterjee and Carroll (2005). We conduct simulation studies to investigate the mean-squared-error of the proposed estimator in both fixed and random parameter settings. We also illustrate the application of this methodology using two real data examples. Both simulated and real data examples suggest that the proposed estimator strikes an excellent balance between bias and efficiency depending on the true nature of the gene-environment association and the sample size for a given study. Exploiting Gene-Environment Independence for Analysis of Case-Control Studies: An Empirical Bayes Approach to Trade Off between Bias and Efficiency BHRAMAR MUKHERJEE AND NILANJAN CHATTERJEE Department of Biostatistics, University of Michigan Ann Arbor, MI 48109 email: bhramar@umich.edu Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services Rockville, Maryland 20852 email: chattern@mail.nih.gov SUMMARY Standard prospective logistic regression analysis of case-control data often leads to very imprecise estimates of gene-environment interactions due to small numbers of cases or controls in cells of crossing genotype and exposure. In contrast, modern “retrospective” methods, including the celebrated “case-only” approach, can estimate the interaction parameters much more precisely, but they can be seriously biased when the underlying assumption of gene-environment independence is violated. In this article, we propose a novel approach to analyze case-control data that can relax the gene-environment independence assumption using an empirical Bayes (EB) framework. In the special case, involving a binary gene and a binary exposure, the framework leads to an estimator of the odds-ratio interaction parameter in a simple closed form that corresponds to an weighted average of the standard case-only and case-control estimators. We also describe a general approach for deriving the EB estimator and its variances within the retrospective maximum-likelihood framework developed by Chatterjee and Carroll (2005). We conduct simulation studies to investigate the mean-squared-error of the proposed estimator in both fixed and random parameter settings. We also illustrate the application of this methodology using two real data examples. Both simulated and real data examples suggest that the proposed estimator strikes an excellent balance between bias and efficiency depending on the true nature of the gene-environment association and the sample size for a given study." @default.
- W2280493569 created "2016-06-24" @default.
- W2280493569 creator A5015067632 @default.
- W2280493569 creator A5082251592 @default.
- W2280493569 date "2006-01-01" @default.
- W2280493569 modified "2023-09-23" @default.
- W2280493569 title "Exploiting Gene-Environment Independence for Analysis of Case-Control Studies: An Empirical Bayes Approach to Trade Off between Bias and Efficiency" @default.
- W2280493569 cites W1973198827 @default.
- W2280493569 cites W1981892038 @default.
- W2280493569 cites W1983607152 @default.
- W2280493569 cites W1988520084 @default.
- W2280493569 cites W2000812844 @default.
- W2280493569 cites W2000934394 @default.
- W2280493569 cites W2002255986 @default.
- W2280493569 cites W2002817851 @default.
- W2280493569 cites W2018144913 @default.
- W2280493569 cites W2026556557 @default.
- W2280493569 cites W2028682388 @default.
- W2280493569 cites W2032374109 @default.
- W2280493569 cites W2045719383 @default.
- W2280493569 cites W2056538184 @default.
- W2280493569 cites W2061461017 @default.
- W2280493569 cites W2062565701 @default.
- W2280493569 cites W2095098948 @default.
- W2280493569 cites W2096285420 @default.
- W2280493569 cites W2111051773 @default.
- W2280493569 cites W2114726245 @default.
- W2280493569 cites W2118820778 @default.
- W2280493569 cites W2120913101 @default.
- W2280493569 cites W2123178249 @default.
- W2280493569 cites W2129853352 @default.
- W2280493569 cites W2131103396 @default.
- W2280493569 cites W2135542324 @default.
- W2280493569 cites W2150983097 @default.
- W2280493569 cites W2974222084 @default.
- W2280493569 hasPublicationYear "2006" @default.
- W2280493569 type Work @default.
- W2280493569 sameAs 2280493569 @default.
- W2280493569 citedByCount "0" @default.
- W2280493569 crossrefType "journal-article" @default.
- W2280493569 hasAuthorship W2280493569A5015067632 @default.
- W2280493569 hasAuthorship W2280493569A5082251592 @default.
- W2280493569 hasConcept C105795698 @default.
- W2280493569 hasConcept C107673813 @default.
- W2280493569 hasConcept C129848803 @default.
- W2280493569 hasConcept C139945424 @default.
- W2280493569 hasConcept C149782125 @default.
- W2280493569 hasConcept C185429906 @default.
- W2280493569 hasConcept C207201462 @default.
- W2280493569 hasConcept C33923547 @default.
- W2280493569 hasConcept C35651441 @default.
- W2280493569 hasConcept C41008148 @default.
- W2280493569 hasConceptScore W2280493569C105795698 @default.
- W2280493569 hasConceptScore W2280493569C107673813 @default.
- W2280493569 hasConceptScore W2280493569C129848803 @default.
- W2280493569 hasConceptScore W2280493569C139945424 @default.
- W2280493569 hasConceptScore W2280493569C149782125 @default.
- W2280493569 hasConceptScore W2280493569C185429906 @default.
- W2280493569 hasConceptScore W2280493569C207201462 @default.
- W2280493569 hasConceptScore W2280493569C33923547 @default.
- W2280493569 hasConceptScore W2280493569C35651441 @default.
- W2280493569 hasConceptScore W2280493569C41008148 @default.
- W2280493569 hasOpenAccess W2280493569 @default.
- W2280493569 hasRelatedWork W2002817851 @default.
- W2280493569 hasRelatedWork W2123178249 @default.
- W2280493569 hasRelatedWork W2151752382 @default.
- W2280493569 hasRelatedWork W2155462419 @default.
- W2280493569 hasRelatedWork W2474362287 @default.
- W2280493569 hasRelatedWork W2737169039 @default.
- W2280493569 hasRelatedWork W2804759010 @default.
- W2280493569 hasRelatedWork W2901463121 @default.
- W2280493569 hasRelatedWork W2942513988 @default.
- W2280493569 hasRelatedWork W2947251032 @default.
- W2280493569 hasRelatedWork W2951994252 @default.
- W2280493569 hasRelatedWork W2963351205 @default.
- W2280493569 hasRelatedWork W2994941197 @default.
- W2280493569 hasRelatedWork W3014727601 @default.
- W2280493569 hasRelatedWork W3088168275 @default.
- W2280493569 hasRelatedWork W3093513744 @default.
- W2280493569 hasRelatedWork W3141775592 @default.
- W2280493569 hasRelatedWork W3183726305 @default.
- W2280493569 hasRelatedWork W395195926 @default.
- W2280493569 hasRelatedWork W2185313993 @default.
- W2280493569 isParatext "false" @default.
- W2280493569 isRetracted "false" @default.
- W2280493569 magId "2280493569" @default.
- W2280493569 workType "article" @default.