Matches in SemOpenAlex for { <https://semopenalex.org/work/W2280498816> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2280498816 endingPage "428" @default.
- W2280498816 startingPage "417" @default.
- W2280498816 abstract "Different types of partial discharges are created with test objects in laboratory.Their frequency content depends on the type of discharge and other external factors.An SVM extracts characteristics from the power spectral density of the pulses.Noise, corona, internal and surface discharges have different characteristics.The differences are used to classify discharges and separate them from noise. The costs of decommissioning high-voltage equipment due to insulation breakdown are associated to the substitution of the asset and to the interruption of service. They can reach millions of dollars in new equipment purchases, fines and civil lawsuits, aggravated by the negative perception of the grid utility. Thus, condition based maintenance techniques are widely applied to have information about the status of the machine or power cable readily available. Partial discharge (PD) measurements are an important tool in the diagnosis of power systems equipment. The presence of PD can accelerate the local degradation of insulation systems and generate premature failures. Conventionally, PD classification is carried out using the phase resolved partial discharge (PRPD) pattern of pulses. The PRPD is a two dimensional representation of pulses that enables visual inspection but lacks discriminative power in common scenarios found in industrial environments, such as many simultaneous PD sources and low magnitude events that can be hidden below noise. The literature shows several works that complement PRPD with machine learning detectors (neural networks and support vector machines) and with more sophisticated signal representations, like statistics captured in several modalities, wavelets and other transforms, etc. These methods improve the classification accuracy but obscure the interpretation of the results. In this paper, the use of a support vector machine (SVM) operating on the power spectrum density of signals is proposed to identify different pulses what could be used in an online tool in the maintenance decision-making of the utility. Particularly, the approach is based on an SVM endowed with a special kernel that operates in the frequency domain. The SVM is previously trained with pulses of different PD types (internal, surface and corona) and noise that are obtained with several test objects in the laboratory. The experimental results demonstrate that this technique is highly effective in identifying PD for cases where several sources are active or when the noise level is high. Thus, the early identification of critical events with this approach during normal operation of the equipment will help in the decision of decommissioning the asset with reduced costs and low impact to the grid reliability." @default.
- W2280498816 created "2016-06-24" @default.
- W2280498816 creator A5026967773 @default.
- W2280498816 creator A5036279056 @default.
- W2280498816 creator A5042756736 @default.
- W2280498816 creator A5053921091 @default.
- W2280498816 date "2016-08-01" @default.
- W2280498816 modified "2023-10-18" @default.
- W2280498816 title "Multiple partial discharge source discrimination with multiclass support vector machines" @default.
- W2280498816 cites W1971496393 @default.
- W2280498816 cites W1974705751 @default.
- W2280498816 cites W1985150670 @default.
- W2280498816 cites W1985962772 @default.
- W2280498816 cites W2004912215 @default.
- W2280498816 cites W2031113148 @default.
- W2280498816 cites W2057805484 @default.
- W2280498816 cites W2058620903 @default.
- W2280498816 cites W2061352988 @default.
- W2280498816 cites W2076608059 @default.
- W2280498816 cites W2087913253 @default.
- W2280498816 cites W2088410151 @default.
- W2280498816 cites W2088788336 @default.
- W2280498816 cites W2105998701 @default.
- W2280498816 cites W2113085830 @default.
- W2280498816 cites W2115383907 @default.
- W2280498816 cites W2139871393 @default.
- W2280498816 cites W2140942952 @default.
- W2280498816 cites W2142342623 @default.
- W2280498816 cites W2154425812 @default.
- W2280498816 cites W2162774347 @default.
- W2280498816 doi "https://doi.org/10.1016/j.eswa.2016.02.014" @default.
- W2280498816 hasPublicationYear "2016" @default.
- W2280498816 type Work @default.
- W2280498816 sameAs 2280498816 @default.
- W2280498816 citedByCount "39" @default.
- W2280498816 countsByYear W22804988162016 @default.
- W2280498816 countsByYear W22804988162017 @default.
- W2280498816 countsByYear W22804988162018 @default.
- W2280498816 countsByYear W22804988162019 @default.
- W2280498816 countsByYear W22804988162020 @default.
- W2280498816 countsByYear W22804988162021 @default.
- W2280498816 countsByYear W22804988162022 @default.
- W2280498816 countsByYear W22804988162023 @default.
- W2280498816 crossrefType "journal-article" @default.
- W2280498816 hasAuthorship W2280498816A5026967773 @default.
- W2280498816 hasAuthorship W2280498816A5036279056 @default.
- W2280498816 hasAuthorship W2280498816A5042756736 @default.
- W2280498816 hasAuthorship W2280498816A5053921091 @default.
- W2280498816 hasBestOaLocation W22804988162 @default.
- W2280498816 hasConcept C119857082 @default.
- W2280498816 hasConcept C121332964 @default.
- W2280498816 hasConcept C12267149 @default.
- W2280498816 hasConcept C124101348 @default.
- W2280498816 hasConcept C130143024 @default.
- W2280498816 hasConcept C153180895 @default.
- W2280498816 hasConcept C154945302 @default.
- W2280498816 hasConcept C165801399 @default.
- W2280498816 hasConcept C41008148 @default.
- W2280498816 hasConcept C62520636 @default.
- W2280498816 hasConceptScore W2280498816C119857082 @default.
- W2280498816 hasConceptScore W2280498816C121332964 @default.
- W2280498816 hasConceptScore W2280498816C12267149 @default.
- W2280498816 hasConceptScore W2280498816C124101348 @default.
- W2280498816 hasConceptScore W2280498816C130143024 @default.
- W2280498816 hasConceptScore W2280498816C153180895 @default.
- W2280498816 hasConceptScore W2280498816C154945302 @default.
- W2280498816 hasConceptScore W2280498816C165801399 @default.
- W2280498816 hasConceptScore W2280498816C41008148 @default.
- W2280498816 hasConceptScore W2280498816C62520636 @default.
- W2280498816 hasLocation W22804988161 @default.
- W2280498816 hasLocation W22804988162 @default.
- W2280498816 hasOpenAccess W2280498816 @default.
- W2280498816 hasPrimaryLocation W22804988161 @default.
- W2280498816 hasRelatedWork W2041399278 @default.
- W2280498816 hasRelatedWork W2099369243 @default.
- W2280498816 hasRelatedWork W2136184105 @default.
- W2280498816 hasRelatedWork W2163073107 @default.
- W2280498816 hasRelatedWork W3174451172 @default.
- W2280498816 hasRelatedWork W3194539120 @default.
- W2280498816 hasRelatedWork W4205958290 @default.
- W2280498816 hasRelatedWork W4223656335 @default.
- W2280498816 hasRelatedWork W2187500075 @default.
- W2280498816 hasRelatedWork W2345184372 @default.
- W2280498816 hasVolume "55" @default.
- W2280498816 isParatext "false" @default.
- W2280498816 isRetracted "false" @default.
- W2280498816 magId "2280498816" @default.
- W2280498816 workType "article" @default.