Matches in SemOpenAlex for { <https://semopenalex.org/work/W2280904662> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2280904662 endingPage "154" @default.
- W2280904662 startingPage "152" @default.
- W2280904662 abstract "A method to obtain the linearly-constrained minimum-variance (LCMV) beamformer solution simply by applying the minimum-norm least-squares (MNLS) method to the recorded brain magnetic fields is theoretically shown. First, apply the prewhitening process to the recorded data using the data variance-covariance matrix. Then, apply the MNLS method to its outcome. The obtained solution is mathematically proved to be equivalent to the one obtained by the original LCMV beamformer. This method works only when the number of independent neural currents (equivalent to double of the number of specified neural current locations if a spherical head model is used) in the brain to be calculated is not more than the number of magnetic sensors. This is because linear independence of the neural currents is one of prerequisites for obtaining the LCMV beamformer weight matrices. When it is more, the solution currents at different locations are not linearly independent, meaning that the obtained neural currents are mathematically, rather than physiologically, determined by the beamformer weight matrices or the MNLS pseudoinverse matrix, which should be avoided for further analyses on the obtained neural currents.Keywordsminimum-norm least-squares methodlinearlyconstrained minimum-variance beamformerprewhitening" @default.
- W2280904662 created "2016-06-24" @default.
- W2280904662 creator A5031620438 @default.
- W2280904662 date "2010-01-01" @default.
- W2280904662 modified "2023-10-13" @default.
- W2280904662 title "A Method for MEG Data That Obtains Linearly-Constrained Minimum-Variance Beamformer Solution by Minimum-Norm Least-Squares Method" @default.
- W2280904662 cites W1545748428 @default.
- W2280904662 cites W2044030624 @default.
- W2280904662 cites W2084333685 @default.
- W2280904662 cites W2120078534 @default.
- W2280904662 cites W2135908157 @default.
- W2280904662 cites W2144244295 @default.
- W2280904662 cites W2977892579 @default.
- W2280904662 doi "https://doi.org/10.1007/978-3-642-12197-5_32" @default.
- W2280904662 hasPublicationYear "2010" @default.
- W2280904662 type Work @default.
- W2280904662 sameAs 2280904662 @default.
- W2280904662 citedByCount "2" @default.
- W2280904662 countsByYear W22809046622013 @default.
- W2280904662 crossrefType "book-chapter" @default.
- W2280904662 hasAuthorship W2280904662A5031620438 @default.
- W2280904662 hasConcept C105795698 @default.
- W2280904662 hasConcept C11413529 @default.
- W2280904662 hasConcept C154945302 @default.
- W2280904662 hasConcept C165646398 @default.
- W2280904662 hasConcept C17744445 @default.
- W2280904662 hasConcept C178650346 @default.
- W2280904662 hasConcept C185142706 @default.
- W2280904662 hasConcept C185429906 @default.
- W2280904662 hasConcept C191795146 @default.
- W2280904662 hasConcept C199539241 @default.
- W2280904662 hasConcept C28826006 @default.
- W2280904662 hasConcept C33923547 @default.
- W2280904662 hasConcept C41008148 @default.
- W2280904662 hasConcept C50644808 @default.
- W2280904662 hasConceptScore W2280904662C105795698 @default.
- W2280904662 hasConceptScore W2280904662C11413529 @default.
- W2280904662 hasConceptScore W2280904662C154945302 @default.
- W2280904662 hasConceptScore W2280904662C165646398 @default.
- W2280904662 hasConceptScore W2280904662C17744445 @default.
- W2280904662 hasConceptScore W2280904662C178650346 @default.
- W2280904662 hasConceptScore W2280904662C185142706 @default.
- W2280904662 hasConceptScore W2280904662C185429906 @default.
- W2280904662 hasConceptScore W2280904662C191795146 @default.
- W2280904662 hasConceptScore W2280904662C199539241 @default.
- W2280904662 hasConceptScore W2280904662C28826006 @default.
- W2280904662 hasConceptScore W2280904662C33923547 @default.
- W2280904662 hasConceptScore W2280904662C41008148 @default.
- W2280904662 hasConceptScore W2280904662C50644808 @default.
- W2280904662 hasLocation W22809046621 @default.
- W2280904662 hasOpenAccess W2280904662 @default.
- W2280904662 hasPrimaryLocation W22809046621 @default.
- W2280904662 hasRelatedWork W1503357994 @default.
- W2280904662 hasRelatedWork W1524921261 @default.
- W2280904662 hasRelatedWork W1865389687 @default.
- W2280904662 hasRelatedWork W1872796911 @default.
- W2280904662 hasRelatedWork W1986302543 @default.
- W2280904662 hasRelatedWork W1994749532 @default.
- W2280904662 hasRelatedWork W2009898054 @default.
- W2280904662 hasRelatedWork W2019358395 @default.
- W2280904662 hasRelatedWork W2031914296 @default.
- W2280904662 hasRelatedWork W2054844808 @default.
- W2280904662 hasRelatedWork W2054959088 @default.
- W2280904662 hasRelatedWork W2124970376 @default.
- W2280904662 hasRelatedWork W2144111050 @default.
- W2280904662 hasRelatedWork W2144985135 @default.
- W2280904662 hasRelatedWork W2145379891 @default.
- W2280904662 hasRelatedWork W2159006012 @default.
- W2280904662 hasRelatedWork W2163509475 @default.
- W2280904662 hasRelatedWork W2166542403 @default.
- W2280904662 hasRelatedWork W2366088649 @default.
- W2280904662 hasRelatedWork W2505779771 @default.
- W2280904662 isParatext "false" @default.
- W2280904662 isRetracted "false" @default.
- W2280904662 magId "2280904662" @default.
- W2280904662 workType "book-chapter" @default.