Matches in SemOpenAlex for { <https://semopenalex.org/work/W2281552218> ?p ?o ?g. }
- W2281552218 endingPage "e9" @default.
- W2281552218 startingPage "e1" @default.
- W2281552218 abstract "Dopamine transporter (DAT) SPECT imaging is increasingly utilized for diagnostic purposes in suspected Parkinsonian syndromes. We performed a cross-sectional study to investigate whether assessment of texture in DAT SPECT radiotracer uptake enables enhanced correlations with severity of motor and cognitive symptoms in Parkinson's disease (PD), with the long-term goal of enabling clinical utility of DAT SPECT imaging, beyond standard diagnostic tasks, to tracking of progression in PD. Quantitative analysis in routine DAT SPECT imaging, if performed at all, has been restricted to assessment of mean regional uptake. We applied a framework wherein textural features were extracted from the images. Notably, the framework did not require registration to a common template, and worked in the subject-native space. Image analysis included registration of SPECT images onto corresponding MRI images, automatic region-of-interest (ROI) extraction on the MRI images, followed by computation of Haralick texture features. We analyzed 141 subjects from the Parkinson's Progressive Marker Initiative (PPMI) database, including 85 PD and 56 healthy controls (HC) (baseline scans with accompanying 3 T MRI images). We performed univariate and multivariate regression analyses between the quantitative metrics and different clinical measures, namely (i) the UPDRS (part III - motor) score, disease duration as measured from (ii) time of diagnosis (DD-diag.) and (iii) time of appearance of symptoms (DD-sympt.), as well as (iv) the Montreal Cognitive Assessment (MoCA) score. For conventional mean uptake analysis in the putamen, we showed significant correlations with clinical measures only when both HC and PD were included (Pearson correlation r = − 0.74, p-value < 0.001). However, this was not significant when applied to PD subjects only (r = − 0.19, p-value = 0.084), and no such correlations were observed in the caudate. By contrast, for the PD subjects, significant correlations were observed in the caudate when including texture metrics, with (i) UPDRS (p-values < 0.01), (ii) DD-diag. (p-values < 0.001), (iii) DD-sympt (p-values < 0.05), and (iv) MoCA (p-values < 0.01), while no correlations were observed for conventional analysis (p-values = 0.94, 0.34, 0.88 and 0.96, respectively). Our results demonstrated the ability to capture valuable information using advanced texture metrics from striatal DAT SPECT, enabling significant correlations of striatal DAT binding with clinical, motor and cognitive outcomes, and suggesting that textural features hold potential as biomarkers of PD severity and progression." @default.
- W2281552218 created "2016-06-24" @default.
- W2281552218 creator A5007203242 @default.
- W2281552218 creator A5010892998 @default.
- W2281552218 creator A5021438906 @default.
- W2281552218 creator A5035628923 @default.
- W2281552218 creator A5062612986 @default.
- W2281552218 creator A5067560744 @default.
- W2281552218 creator A5072924990 @default.
- W2281552218 creator A5090532380 @default.
- W2281552218 date "2016-02-01" @default.
- W2281552218 modified "2023-09-27" @default.
- W2281552218 title "Application of texture analysis to DAT SPECT imaging: Relationship to clinical assessments" @default.
- W2281552218 cites W1129403382 @default.
- W2281552218 cites W1787967830 @default.
- W2281552218 cites W1980688148 @default.
- W2281552218 cites W1982430329 @default.
- W2281552218 cites W1984093344 @default.
- W2281552218 cites W1984648382 @default.
- W2281552218 cites W1987653354 @default.
- W2281552218 cites W1988494453 @default.
- W2281552218 cites W1993779013 @default.
- W2281552218 cites W1997747933 @default.
- W2281552218 cites W2008477756 @default.
- W2281552218 cites W2017322846 @default.
- W2281552218 cites W2017525257 @default.
- W2281552218 cites W2026371916 @default.
- W2281552218 cites W2033973189 @default.
- W2281552218 cites W2044447415 @default.
- W2281552218 cites W2044465660 @default.
- W2281552218 cites W2050518967 @default.
- W2281552218 cites W2053154970 @default.
- W2281552218 cites W2073048162 @default.
- W2281552218 cites W2074445922 @default.
- W2281552218 cites W2075858533 @default.
- W2281552218 cites W2083210814 @default.
- W2281552218 cites W2085740388 @default.
- W2281552218 cites W2089588713 @default.
- W2281552218 cites W2097475056 @default.
- W2281552218 cites W2098399146 @default.
- W2281552218 cites W2099835501 @default.
- W2281552218 cites W2103004421 @default.
- W2281552218 cites W2104120917 @default.
- W2281552218 cites W2109104260 @default.
- W2281552218 cites W2115893846 @default.
- W2281552218 cites W2120386931 @default.
- W2281552218 cites W2128739912 @default.
- W2281552218 cites W2129167248 @default.
- W2281552218 cites W2131299761 @default.
- W2281552218 cites W2133218279 @default.
- W2281552218 cites W2141696740 @default.
- W2281552218 cites W2142068201 @default.
- W2281552218 cites W2148726987 @default.
- W2281552218 cites W2151323386 @default.
- W2281552218 cites W2151491455 @default.
- W2281552218 cites W2153563443 @default.
- W2281552218 cites W2158900973 @default.
- W2281552218 cites W2161148141 @default.
- W2281552218 cites W2171839474 @default.
- W2281552218 cites W2194394814 @default.
- W2281552218 cites W2206271991 @default.
- W2281552218 cites W2240747015 @default.
- W2281552218 cites W2314099791 @default.
- W2281552218 cites W2335662141 @default.
- W2281552218 cites W2336893408 @default.
- W2281552218 cites W2403672180 @default.
- W2281552218 cites W2473669542 @default.
- W2281552218 cites W4243810761 @default.
- W2281552218 doi "https://doi.org/10.1016/j.nicl.2016.02.012" @default.
- W2281552218 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5153560" @default.
- W2281552218 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27995072" @default.
- W2281552218 hasPublicationYear "2016" @default.
- W2281552218 type Work @default.
- W2281552218 sameAs 2281552218 @default.
- W2281552218 citedByCount "57" @default.
- W2281552218 countsByYear W22815522182016 @default.
- W2281552218 countsByYear W22815522182017 @default.
- W2281552218 countsByYear W22815522182018 @default.
- W2281552218 countsByYear W22815522182019 @default.
- W2281552218 countsByYear W22815522182020 @default.
- W2281552218 countsByYear W22815522182021 @default.
- W2281552218 countsByYear W22815522182022 @default.
- W2281552218 countsByYear W22815522182023 @default.
- W2281552218 crossrefType "journal-article" @default.
- W2281552218 hasAuthorship W2281552218A5007203242 @default.
- W2281552218 hasAuthorship W2281552218A5010892998 @default.
- W2281552218 hasAuthorship W2281552218A5021438906 @default.
- W2281552218 hasAuthorship W2281552218A5035628923 @default.
- W2281552218 hasAuthorship W2281552218A5062612986 @default.
- W2281552218 hasAuthorship W2281552218A5067560744 @default.
- W2281552218 hasAuthorship W2281552218A5072924990 @default.
- W2281552218 hasAuthorship W2281552218A5090532380 @default.
- W2281552218 hasBestOaLocation W22815522181 @default.
- W2281552218 hasConcept C119857082 @default.
- W2281552218 hasConcept C126322002 @default.
- W2281552218 hasConcept C137183658 @default.
- W2281552218 hasConcept C161584116 @default.
- W2281552218 hasConcept C199163554 @default.