Matches in SemOpenAlex for { <https://semopenalex.org/work/W2282002114> ?p ?o ?g. }
- W2282002114 endingPage "308" @default.
- W2282002114 startingPage "294" @default.
- W2282002114 abstract "Pharmacovigilance (PhV) is an important clinical activity with strong implications for population health and clinical research. The main goal of PhV is the timely detection of adverse drug events (ADEs) that are novel in their clinical nature, severity and/or frequency. Drug interactions (DI) pose an important problem in the development of new drugs and post marketing PhV that contribute to 6-30% of all unexpected ADEs. Therefore, the early detection of DI is vital. Spontaneous reporting systems (SRS) have served as the core data collection system for post marketing PhV since the 1960s. The main objective of our study was to particularly identify signals of DI from SRS. In addition, we are presenting an optimized tailored mining algorithm called hybrid Apriori.The proposed algorithm is based on an optimized and modified association rule mining (ARM) approach. A hybrid Apriori algorithm has been applied to the SRS of the United States Food and Drug Administration's (U.S. FDA) adverse events reporting system (FAERS) in order to extract significant association patterns of drug interaction-adverse event (DIAE). We have assessed the resulting DIAEs qualitatively and quantitatively using two different triage features: a three-element taxonomy and three performance metrics. These features were applied on two random samples of 100 interacting and 100 non-interacting DIAE patterns. Additionally, we have employed logistic regression (LR) statistic method to quantify the magnitude and direction of interactions in order to test for confounding by co-medication in unknown interacting DIAE patterns.Hybrid Apriori extracted 2933 interacting DIAE patterns (including 1256 serious ones) and 530 non-interacting DIAE patterns. Referring to the current knowledge using four different reliable resources of DI, the results showed that the proposed method can extract signals of serious interacting DIAEs. Various association patterns could be identified based on the relationships among the elements which composed a pattern. The average performance of the method showed 85% precision, 80% negative predictive value, 81% sensitivity and 84% specificity. The LR modeling could provide the statistical context to guard against spurious DIAEs.The proposed method could efficiently detect DIAE signals from SRS data as well as, identifying rare adverse drug reactions (ADRs)." @default.
- W2282002114 created "2016-06-24" @default.
- W2282002114 creator A5013509271 @default.
- W2282002114 creator A5045039485 @default.
- W2282002114 creator A5067062804 @default.
- W2282002114 creator A5088840981 @default.
- W2282002114 date "2016-04-01" @default.
- W2282002114 modified "2023-10-07" @default.
- W2282002114 title "Mining association patterns of drug-interactions using post marketing FDA’s spontaneous reporting data" @default.
- W2282002114 cites W1481049970 @default.
- W2282002114 cites W1822090013 @default.
- W2282002114 cites W1856490756 @default.
- W2282002114 cites W1934602670 @default.
- W2282002114 cites W1965826505 @default.
- W2282002114 cites W1966989782 @default.
- W2282002114 cites W1967555951 @default.
- W2282002114 cites W1976955691 @default.
- W2282002114 cites W1981156855 @default.
- W2282002114 cites W1983053593 @default.
- W2282002114 cites W1988100739 @default.
- W2282002114 cites W1993560650 @default.
- W2282002114 cites W2001905624 @default.
- W2282002114 cites W2007474660 @default.
- W2282002114 cites W2007739294 @default.
- W2282002114 cites W2009313526 @default.
- W2282002114 cites W2011804598 @default.
- W2282002114 cites W2018317238 @default.
- W2282002114 cites W2027708325 @default.
- W2282002114 cites W2027710934 @default.
- W2282002114 cites W2031861544 @default.
- W2282002114 cites W2037881603 @default.
- W2282002114 cites W2038397660 @default.
- W2282002114 cites W2053646449 @default.
- W2282002114 cites W2056876304 @default.
- W2282002114 cites W2057881684 @default.
- W2282002114 cites W2068460589 @default.
- W2282002114 cites W2092690624 @default.
- W2282002114 cites W2097331346 @default.
- W2282002114 cites W2098730643 @default.
- W2282002114 cites W2098785067 @default.
- W2282002114 cites W2105298070 @default.
- W2282002114 cites W2107516065 @default.
- W2282002114 cites W2110646369 @default.
- W2282002114 cites W2117397379 @default.
- W2282002114 cites W2129796827 @default.
- W2282002114 cites W2152964734 @default.
- W2282002114 cites W2153972688 @default.
- W2282002114 cites W2159666011 @default.
- W2282002114 cites W2166559705 @default.
- W2282002114 cites W2168933221 @default.
- W2282002114 cites W2199417652 @default.
- W2282002114 cites W2232325453 @default.
- W2282002114 doi "https://doi.org/10.1016/j.jbi.2016.02.009" @default.
- W2282002114 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26903152" @default.
- W2282002114 hasPublicationYear "2016" @default.
- W2282002114 type Work @default.
- W2282002114 sameAs 2282002114 @default.
- W2282002114 citedByCount "55" @default.
- W2282002114 countsByYear W22820021142016 @default.
- W2282002114 countsByYear W22820021142017 @default.
- W2282002114 countsByYear W22820021142018 @default.
- W2282002114 countsByYear W22820021142019 @default.
- W2282002114 countsByYear W22820021142020 @default.
- W2282002114 countsByYear W22820021142021 @default.
- W2282002114 countsByYear W22820021142022 @default.
- W2282002114 countsByYear W22820021142023 @default.
- W2282002114 crossrefType "journal-article" @default.
- W2282002114 hasAuthorship W2282002114A5013509271 @default.
- W2282002114 hasAuthorship W2282002114A5045039485 @default.
- W2282002114 hasAuthorship W2282002114A5067062804 @default.
- W2282002114 hasAuthorship W2282002114A5088840981 @default.
- W2282002114 hasConcept C105795698 @default.
- W2282002114 hasConcept C119857082 @default.
- W2282002114 hasConcept C124101348 @default.
- W2282002114 hasConcept C151956035 @default.
- W2282002114 hasConcept C193524817 @default.
- W2282002114 hasConcept C197934379 @default.
- W2282002114 hasConcept C2777105317 @default.
- W2282002114 hasConcept C33923547 @default.
- W2282002114 hasConcept C41008148 @default.
- W2282002114 hasConcept C57658597 @default.
- W2282002114 hasConcept C71924100 @default.
- W2282002114 hasConcept C81440476 @default.
- W2282002114 hasConcept C89128539 @default.
- W2282002114 hasConcept C98274493 @default.
- W2282002114 hasConceptScore W2282002114C105795698 @default.
- W2282002114 hasConceptScore W2282002114C119857082 @default.
- W2282002114 hasConceptScore W2282002114C124101348 @default.
- W2282002114 hasConceptScore W2282002114C151956035 @default.
- W2282002114 hasConceptScore W2282002114C193524817 @default.
- W2282002114 hasConceptScore W2282002114C197934379 @default.
- W2282002114 hasConceptScore W2282002114C2777105317 @default.
- W2282002114 hasConceptScore W2282002114C33923547 @default.
- W2282002114 hasConceptScore W2282002114C41008148 @default.
- W2282002114 hasConceptScore W2282002114C57658597 @default.
- W2282002114 hasConceptScore W2282002114C71924100 @default.
- W2282002114 hasConceptScore W2282002114C81440476 @default.
- W2282002114 hasConceptScore W2282002114C89128539 @default.