Matches in SemOpenAlex for { <https://semopenalex.org/work/W2282133093> ?p ?o ?g. }
- W2282133093 endingPage "36" @default.
- W2282133093 startingPage "29" @default.
- W2282133093 abstract "Antimicrobial stewardship programs have been shown to limit the inappropriate use of antimicrobials. Hospitals are increasingly relying on clinical decision support systems to assist in the demanding prescription reviewing process. In previous work, we have reported on an emerging clinical decision support system for antimicrobial stewardship that can learn new rules supervised by user feedback. In this paper, we report on the evaluation of this system.The evaluated system uses a knowledge base coupled with a supervised learning module that extracts classification rules for inappropriate antimicrobial prescriptions using past recommendations for dose and dosing frequency adjustments, discontinuation of therapy, early switch from intravenous to oral therapy, and redundant antimicrobial spectrum. Over five weeks, the learning module was deployed alongside the baseline system to prospectively evaluate its ability to discover rules that complement the existing knowledge base for identifying inappropriate prescriptions of piperacillin-tazobactam, a frequently used antimicrobial.The antimicrobial stewardship pharmacists reviewed 374 prescriptions, of which 209 (56% of 374) were identified as inappropriate leading to 43 recommendations to optimize prescriptions. The baseline system combined with the learning module triggered alerts in 270 prescriptions with a positive predictive value of identifying inappropriate prescriptions of 74%. Of these, 240 reviewed prescriptions were identified by the alerts of the baseline system with a positive predictive value of 82% and 105 reviewed prescriptions were identified by the alerts of the learning module with a positive predictive value of 62%. The combined system triggered alerts for all 43 recommendations, resulting in a rate of actionable alerts of 16% (43 recommendations of 270 reviewed alerts); the baseline system triggered alerts for 38 interventions, resulting in a rate of actionable alerts of 16% (38 of 240 reviewed alerts); and the learning module triggered alerts for 17 interventions, resulting in a rate of actionable alerts of 16% (17 of 105 reviewed alerts). The learning module triggered alerts for every inappropriate prescription missed by the knowledge base of the baseline system (n=5).The learning module was able to extract clinically relevant rules for multiple types of antimicrobial alerts. The learned rules were shown to extend the knowledge base of the baseline system by identifying pharmacist interventions that were missed by the baseline system. The learned rules identified inappropriate prescribing practices that were not supported by local experts and were missing from its knowledge base. However, combining the baseline system and the learning module increased the number of false positives." @default.
- W2282133093 created "2016-06-24" @default.
- W2282133093 creator A5010148072 @default.
- W2282133093 creator A5070620974 @default.
- W2282133093 creator A5084150865 @default.
- W2282133093 creator A5089404914 @default.
- W2282133093 date "2016-03-01" @default.
- W2282133093 modified "2023-10-10" @default.
- W2282133093 title "Evaluation of a machine learning capability for a clinical decision support system to enhance antimicrobial stewardship programs" @default.
- W2282133093 cites W1511436002 @default.
- W2282133093 cites W1513918033 @default.
- W2282133093 cites W1524010859 @default.
- W2282133093 cites W1550111394 @default.
- W2282133093 cites W1972641183 @default.
- W2282133093 cites W1973036367 @default.
- W2282133093 cites W1989319949 @default.
- W2282133093 cites W1998378687 @default.
- W2282133093 cites W2016449808 @default.
- W2282133093 cites W2032055397 @default.
- W2282133093 cites W2075873371 @default.
- W2282133093 cites W2110922423 @default.
- W2282133093 cites W2115066867 @default.
- W2282133093 cites W2137977882 @default.
- W2282133093 cites W2140821216 @default.
- W2282133093 cites W2140844230 @default.
- W2282133093 cites W2147785741 @default.
- W2282133093 cites W2161583355 @default.
- W2282133093 cites W2164031526 @default.
- W2282133093 cites W2168908910 @default.
- W2282133093 doi "https://doi.org/10.1016/j.artmed.2016.02.001" @default.
- W2282133093 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26947174" @default.
- W2282133093 hasPublicationYear "2016" @default.
- W2282133093 type Work @default.
- W2282133093 sameAs 2282133093 @default.
- W2282133093 citedByCount "45" @default.
- W2282133093 countsByYear W22821330932016 @default.
- W2282133093 countsByYear W22821330932017 @default.
- W2282133093 countsByYear W22821330932018 @default.
- W2282133093 countsByYear W22821330932019 @default.
- W2282133093 countsByYear W22821330932020 @default.
- W2282133093 countsByYear W22821330932021 @default.
- W2282133093 countsByYear W22821330932022 @default.
- W2282133093 countsByYear W22821330932023 @default.
- W2282133093 crossrefType "journal-article" @default.
- W2282133093 hasAuthorship W2282133093A5010148072 @default.
- W2282133093 hasAuthorship W2282133093A5070620974 @default.
- W2282133093 hasAuthorship W2282133093A5084150865 @default.
- W2282133093 hasAuthorship W2282133093A5089404914 @default.
- W2282133093 hasConcept C107327155 @default.
- W2282133093 hasConcept C119857082 @default.
- W2282133093 hasConcept C126322002 @default.
- W2282133093 hasConcept C154945302 @default.
- W2282133093 hasConcept C17744445 @default.
- W2282133093 hasConcept C177713679 @default.
- W2282133093 hasConcept C199539241 @default.
- W2282133093 hasConcept C2426938 @default.
- W2282133093 hasConcept C2776040555 @default.
- W2282133093 hasConcept C2777950569 @default.
- W2282133093 hasConcept C2778715236 @default.
- W2282133093 hasConcept C41008148 @default.
- W2282133093 hasConcept C4554734 @default.
- W2282133093 hasConcept C501593827 @default.
- W2282133093 hasConcept C63527458 @default.
- W2282133093 hasConcept C71924100 @default.
- W2282133093 hasConcept C86803240 @default.
- W2282133093 hasConcept C89423630 @default.
- W2282133093 hasConcept C94625758 @default.
- W2282133093 hasConcept C94665300 @default.
- W2282133093 hasConcept C98274493 @default.
- W2282133093 hasConceptScore W2282133093C107327155 @default.
- W2282133093 hasConceptScore W2282133093C119857082 @default.
- W2282133093 hasConceptScore W2282133093C126322002 @default.
- W2282133093 hasConceptScore W2282133093C154945302 @default.
- W2282133093 hasConceptScore W2282133093C17744445 @default.
- W2282133093 hasConceptScore W2282133093C177713679 @default.
- W2282133093 hasConceptScore W2282133093C199539241 @default.
- W2282133093 hasConceptScore W2282133093C2426938 @default.
- W2282133093 hasConceptScore W2282133093C2776040555 @default.
- W2282133093 hasConceptScore W2282133093C2777950569 @default.
- W2282133093 hasConceptScore W2282133093C2778715236 @default.
- W2282133093 hasConceptScore W2282133093C41008148 @default.
- W2282133093 hasConceptScore W2282133093C4554734 @default.
- W2282133093 hasConceptScore W2282133093C501593827 @default.
- W2282133093 hasConceptScore W2282133093C63527458 @default.
- W2282133093 hasConceptScore W2282133093C71924100 @default.
- W2282133093 hasConceptScore W2282133093C86803240 @default.
- W2282133093 hasConceptScore W2282133093C89423630 @default.
- W2282133093 hasConceptScore W2282133093C94625758 @default.
- W2282133093 hasConceptScore W2282133093C94665300 @default.
- W2282133093 hasConceptScore W2282133093C98274493 @default.
- W2282133093 hasLocation W22821330931 @default.
- W2282133093 hasLocation W22821330932 @default.
- W2282133093 hasOpenAccess W2282133093 @default.
- W2282133093 hasPrimaryLocation W22821330931 @default.
- W2282133093 hasRelatedWork W2282133093 @default.
- W2282133093 hasRelatedWork W2434881148 @default.
- W2282133093 hasRelatedWork W2557287517 @default.
- W2282133093 hasRelatedWork W2771600985 @default.