Matches in SemOpenAlex for { <https://semopenalex.org/work/W2282202204> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2282202204 endingPage "788" @default.
- W2282202204 startingPage "783" @default.
- W2282202204 abstract "The present paper illustrates comprehensive study on the noise level assessment and the feasibility of ANN modeling for road traffic noise prediction at Indian Intermediate, Yavatmal city, district place of Vidarbha region in Maharashtra state. Sixteen locations were identified at uninterrupted and interrupted traffic flow conditions for conducting field studies . Traffic volume study (composition & classified traffic volume) and Noise level study are carried out simultaneously. To assess the extent of noise pollution due to vehicular traffic flow, Instantaneous Noise levels in dBA are recorded (one count per two second i.e 30 counts per minute) and grouped in 15 minutes interval to evaluate noise descriptors on all selected locations. Noise level descriptors in the form of Lmax, Lmin, L10, L50, L90, Leq, Lnp, TNI (Traffic Noise Index), NC (Noise Climate) are evaluated. Artificial Neural Network software (Elite ANN) is used, the network uses feed forward negative back propagation algorithm with three hidden and three previous time elements of weights. ANN modeling is performed through input data asTotal traffic, Traffic composition (Bus/Truck, LCV, TW, Bicycle and Others) in % and carriageway width, Distance of receiver from pavement. The observed input and output data is processed and trained through ANN for interrupted and uninterrupted flow condition. The outputs obtained by ANN modeling for prediction of noise descriptors are compared with observed data. To enhance the accuracy of prediction, further this model has been calibrated by using linear regression analysis between observed and predicted noise levels. The MLP was outperforming, model performance was evaluated using the root mean square error (RMSE), the mean absolute error (MAE). When comparing the prediction accuracy, RMSE was considered the best indicator. It is recommended that ANN modeling is most probable solution for random sample of traffic noise data.. Key WordsANN (Artificial Neural Network), Road Traffic, Noise levels" @default.
- W2282202204 created "2016-06-24" @default.
- W2282202204 creator A5051249736 @default.
- W2282202204 creator A5077969361 @default.
- W2282202204 date "2008-07-01" @default.
- W2282202204 modified "2023-09-26" @default.
- W2282202204 title "ANN MODELING OF NOISE LEVELS DUE TO VEHICULAR TRAFFIC FLOW IN INDIAN INTERMEDIATE CITY" @default.
- W2282202204 cites W1546787022 @default.
- W2282202204 cites W1594961459 @default.
- W2282202204 cites W1964319342 @default.
- W2282202204 cites W1969013536 @default.
- W2282202204 cites W1995265224 @default.
- W2282202204 cites W1998442441 @default.
- W2282202204 cites W2072032948 @default.
- W2282202204 cites W2082510089 @default.
- W2282202204 cites W2097303063 @default.
- W2282202204 cites W2111381770 @default.
- W2282202204 cites W2114824684 @default.
- W2282202204 cites W2257733582 @default.
- W2282202204 cites W236709065 @default.
- W2282202204 cites W2622031971 @default.
- W2282202204 cites W750097588 @default.
- W2282202204 cites W2523595336 @default.
- W2282202204 hasPublicationYear "2008" @default.
- W2282202204 type Work @default.
- W2282202204 sameAs 2282202204 @default.
- W2282202204 citedByCount "5" @default.
- W2282202204 crossrefType "journal-article" @default.
- W2282202204 hasAuthorship W2282202204A5051249736 @default.
- W2282202204 hasAuthorship W2282202204A5077969361 @default.
- W2282202204 hasConcept C105795698 @default.
- W2282202204 hasConcept C115961682 @default.
- W2282202204 hasConcept C127413603 @default.
- W2282202204 hasConcept C130858481 @default.
- W2282202204 hasConcept C154945302 @default.
- W2282202204 hasConcept C163294075 @default.
- W2282202204 hasConcept C171146098 @default.
- W2282202204 hasConcept C207512268 @default.
- W2282202204 hasConcept C2781353297 @default.
- W2282202204 hasConcept C33923547 @default.
- W2282202204 hasConcept C38652104 @default.
- W2282202204 hasConcept C41008148 @default.
- W2282202204 hasConcept C44154836 @default.
- W2282202204 hasConcept C50644808 @default.
- W2282202204 hasConcept C52121051 @default.
- W2282202204 hasConcept C99498987 @default.
- W2282202204 hasConceptScore W2282202204C105795698 @default.
- W2282202204 hasConceptScore W2282202204C115961682 @default.
- W2282202204 hasConceptScore W2282202204C127413603 @default.
- W2282202204 hasConceptScore W2282202204C130858481 @default.
- W2282202204 hasConceptScore W2282202204C154945302 @default.
- W2282202204 hasConceptScore W2282202204C163294075 @default.
- W2282202204 hasConceptScore W2282202204C171146098 @default.
- W2282202204 hasConceptScore W2282202204C207512268 @default.
- W2282202204 hasConceptScore W2282202204C2781353297 @default.
- W2282202204 hasConceptScore W2282202204C33923547 @default.
- W2282202204 hasConceptScore W2282202204C38652104 @default.
- W2282202204 hasConceptScore W2282202204C41008148 @default.
- W2282202204 hasConceptScore W2282202204C44154836 @default.
- W2282202204 hasConceptScore W2282202204C50644808 @default.
- W2282202204 hasConceptScore W2282202204C52121051 @default.
- W2282202204 hasConceptScore W2282202204C99498987 @default.
- W2282202204 hasLocation W22822022041 @default.
- W2282202204 hasOpenAccess W2282202204 @default.
- W2282202204 hasPrimaryLocation W22822022041 @default.
- W2282202204 hasRelatedWork W2009424904 @default.
- W2282202204 hasRelatedWork W2073609814 @default.
- W2282202204 hasRelatedWork W2112206060 @default.
- W2282202204 hasRelatedWork W2181332251 @default.
- W2282202204 hasRelatedWork W2184107518 @default.
- W2282202204 hasRelatedWork W2188775330 @default.
- W2282202204 hasRelatedWork W2246008224 @default.
- W2282202204 hasRelatedWork W2257733582 @default.
- W2282202204 hasRelatedWork W2779926540 @default.
- W2282202204 hasRelatedWork W2792702873 @default.
- W2282202204 hasRelatedWork W2891763404 @default.
- W2282202204 hasRelatedWork W3025223801 @default.
- W2282202204 hasRelatedWork W3146310975 @default.
- W2282202204 hasRelatedWork W3167472915 @default.
- W2282202204 hasRelatedWork W780033640 @default.
- W2282202204 hasRelatedWork W811598682 @default.
- W2282202204 hasRelatedWork W2182674738 @default.
- W2282202204 hasRelatedWork W2189435794 @default.
- W2282202204 hasRelatedWork W2549374591 @default.
- W2282202204 hasRelatedWork W2994291917 @default.
- W2282202204 isParatext "false" @default.
- W2282202204 isRetracted "false" @default.
- W2282202204 magId "2282202204" @default.
- W2282202204 workType "article" @default.