Matches in SemOpenAlex for { <https://semopenalex.org/work/W2282372035> ?p ?o ?g. }
- W2282372035 abstract "The nature of clinical data makes it difficult to quickly select, tune and apply machine learning algorithms to clinical prognosis. As a result, a lot of time is spent searching for the most appropriate machine learning algorithms applicable in clinical prognosis that contains either binary-valued or multi-valued attributes. The study set out to identify and evaluate the performance of machine learning classification schemes applied in clinical prognosis of post-operative life expectancy in the lung cancer patients. Multilayer Perceptron, J48, and the Naive Bayes algorithms were used to train and test models on Thoracic Surgery datasets obtained from the University of California Irvine machine learning repository. Stratified 10-fold cross-validation was used to evaluate baseline performance accuracy of the classifiers. The comparative analysis shows that multilayer perceptron performed best with classification accuracy of 82.3%, J48 came out second with classification accuracy of 81.8%, and Naive Bayes came out the worst with classification accuracy of 74.4%. The quality and outcome of the chosen machine learning algorithms depends on the ingenuity of the clinical miner." @default.
- W2282372035 created "2016-06-24" @default.
- W2282372035 creator A5067397612 @default.
- W2282372035 date "2015-04-17" @default.
- W2282372035 modified "2023-09-27" @default.
- W2282372035 title "Performance Evaluation of Machine Learning Algorithms in Post-operative Life Expectancy in the Lung Cancer Patients." @default.
- W2282372035 cites W1570448133 @default.
- W2282372035 cites W157836768 @default.
- W2282372035 cites W1634075355 @default.
- W2282372035 cites W169052826 @default.
- W2282372035 cites W1751977842 @default.
- W2282372035 cites W1966021193 @default.
- W2282372035 cites W1967803810 @default.
- W2282372035 cites W1983024255 @default.
- W2282372035 cites W1993539890 @default.
- W2282372035 cites W2006020859 @default.
- W2282372035 cites W2007417077 @default.
- W2282372035 cites W2028598612 @default.
- W2282372035 cites W2040260156 @default.
- W2282372035 cites W2043606064 @default.
- W2282372035 cites W2061359421 @default.
- W2282372035 cites W2068970508 @default.
- W2282372035 cites W2072613728 @default.
- W2282372035 cites W2102125254 @default.
- W2282372035 cites W2115975294 @default.
- W2282372035 cites W2117162240 @default.
- W2282372035 cites W2117168324 @default.
- W2282372035 cites W2117289995 @default.
- W2282372035 cites W2120497086 @default.
- W2282372035 cites W2124685890 @default.
- W2282372035 cites W2128846171 @default.
- W2282372035 cites W2129404933 @default.
- W2282372035 cites W2132996843 @default.
- W2282372035 cites W2135310007 @default.
- W2282372035 cites W2137687977 @default.
- W2282372035 cites W2138253457 @default.
- W2282372035 cites W2140617045 @default.
- W2282372035 cites W2141975087 @default.
- W2282372035 cites W2147273498 @default.
- W2282372035 cites W2148143831 @default.
- W2282372035 cites W2182273398 @default.
- W2282372035 cites W2185950787 @default.
- W2282372035 cites W2188614942 @default.
- W2282372035 cites W2260087768 @default.
- W2282372035 cites W2270635011 @default.
- W2282372035 cites W2290063373 @default.
- W2282372035 cites W2291848788 @default.
- W2282372035 cites W2312934066 @default.
- W2282372035 cites W2317999751 @default.
- W2282372035 cites W2338040795 @default.
- W2282372035 cites W2949016307 @default.
- W2282372035 cites W3104887532 @default.
- W2282372035 cites W3120740533 @default.
- W2282372035 cites W3164611467 @default.
- W2282372035 cites W90732934 @default.
- W2282372035 cites W202630329 @default.
- W2282372035 cites W2356419178 @default.
- W2282372035 cites W2401291795 @default.
- W2282372035 cites W2949130511 @default.
- W2282372035 hasPublicationYear "2015" @default.
- W2282372035 type Work @default.
- W2282372035 sameAs 2282372035 @default.
- W2282372035 citedByCount "2" @default.
- W2282372035 countsByYear W22823720352019 @default.
- W2282372035 countsByYear W22823720352020 @default.
- W2282372035 crossrefType "posted-content" @default.
- W2282372035 hasAuthorship W2282372035A5067397612 @default.
- W2282372035 hasConcept C110083411 @default.
- W2282372035 hasConcept C11413529 @default.
- W2282372035 hasConcept C119857082 @default.
- W2282372035 hasConcept C12267149 @default.
- W2282372035 hasConcept C154945302 @default.
- W2282372035 hasConcept C169903167 @default.
- W2282372035 hasConcept C179717631 @default.
- W2282372035 hasConcept C27181475 @default.
- W2282372035 hasConcept C41008148 @default.
- W2282372035 hasConcept C50644808 @default.
- W2282372035 hasConcept C52001869 @default.
- W2282372035 hasConcept C52003472 @default.
- W2282372035 hasConcept C60908668 @default.
- W2282372035 hasConcept C66905080 @default.
- W2282372035 hasConcept C84525736 @default.
- W2282372035 hasConceptScore W2282372035C110083411 @default.
- W2282372035 hasConceptScore W2282372035C11413529 @default.
- W2282372035 hasConceptScore W2282372035C119857082 @default.
- W2282372035 hasConceptScore W2282372035C12267149 @default.
- W2282372035 hasConceptScore W2282372035C154945302 @default.
- W2282372035 hasConceptScore W2282372035C169903167 @default.
- W2282372035 hasConceptScore W2282372035C179717631 @default.
- W2282372035 hasConceptScore W2282372035C27181475 @default.
- W2282372035 hasConceptScore W2282372035C41008148 @default.
- W2282372035 hasConceptScore W2282372035C50644808 @default.
- W2282372035 hasConceptScore W2282372035C52001869 @default.
- W2282372035 hasConceptScore W2282372035C52003472 @default.
- W2282372035 hasConceptScore W2282372035C60908668 @default.
- W2282372035 hasConceptScore W2282372035C66905080 @default.
- W2282372035 hasConceptScore W2282372035C84525736 @default.
- W2282372035 hasLocation W22823720351 @default.
- W2282372035 hasOpenAccess W2282372035 @default.
- W2282372035 hasPrimaryLocation W22823720351 @default.