Matches in SemOpenAlex for { <https://semopenalex.org/work/W2282458421> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2282458421 abstract "Content-based video analysis serves as the cornerstone for many applications: video understanding or summarization, multimedia information retrieval and data mining, etc. In our research, we aim to automatically detect anomalous events from surveillance videos (such as video monitoring traffic flow or pedestrian congestion in public spaces). An event is an anomaly if its behavior deviates from what one expects. For example, one such anomaly would be a vehicle making left turn from a straight-only traffic lane. If a system can detect such an event, which poses a safety risk, a human operator can be signaled to alleviate the situation. Conceptually, what constitutes an anomaly varies in different video scenarios and is difficult to be defined in a general case. Our first solution is based on an unsupervised learning approach. First, all the video events are represented by trajectories of moving objects. Then they are clustered into several behavior patterns under a probabilistic framework. Those patterns with low frequency of occurrence (few trajectory supports) are identified as anomalous patterns. Therefore, our system can automatically detect anomalous object trajectories without acquiring any domain knowledge for different video scenarios. Our contributions include a novel hierarchical clustering algorithm and branch pruning strategies to reduce the complexity. The second solution extends our anomalous trajectory detection to an arbitrary time length (e.g., one part of a complete trajectory) and multiple objects (multiple trajectories). It is a hierarchal data mining process. We define video events at three semantic levels considering spatiotemporal context: atomic event (motion of one object at any specific time), sequential event (motion of one object within a time range), and co-occurrence event (co-occurrence of multiple objects at specific time). Frequency-based mining techniques are utilized to automatically discover normal event patterns at each level. Those trajectory(ies) parts different from normal patterns are detected as anomalous. Furthermore, we extend this solution to video scenarios where object trajectories cannot be extracted (e.g., crowd motion analysis). Our contributions in this solution include introduction of different event levels and incorporation of spatiotemporal context into video anomaly detection." @default.
- W2282458421 created "2016-06-24" @default.
- W2282458421 creator A5081565611 @default.
- W2282458421 date "2011-02-15" @default.
- W2282458421 modified "2023-09-24" @default.
- W2282458421 title "Anomalous Event Detection from Surveillance Video" @default.
- W2282458421 hasPublicationYear "2011" @default.
- W2282458421 type Work @default.
- W2282458421 sameAs 2282458421 @default.
- W2282458421 citedByCount "2" @default.
- W2282458421 countsByYear W22824584212013 @default.
- W2282458421 countsByYear W22824584212020 @default.
- W2282458421 crossrefType "book" @default.
- W2282458421 hasAuthorship W2282458421A5081565611 @default.
- W2282458421 hasConcept C108010975 @default.
- W2282458421 hasConcept C111919701 @default.
- W2282458421 hasConcept C121332964 @default.
- W2282458421 hasConcept C124101348 @default.
- W2282458421 hasConcept C1276947 @default.
- W2282458421 hasConcept C13662910 @default.
- W2282458421 hasConcept C154945302 @default.
- W2282458421 hasConcept C166957645 @default.
- W2282458421 hasConcept C170858558 @default.
- W2282458421 hasConcept C202474056 @default.
- W2282458421 hasConcept C205649164 @default.
- W2282458421 hasConcept C2779343474 @default.
- W2282458421 hasConcept C2779662365 @default.
- W2282458421 hasConcept C2781238097 @default.
- W2282458421 hasConcept C31972630 @default.
- W2282458421 hasConcept C41008148 @default.
- W2282458421 hasConcept C49937458 @default.
- W2282458421 hasConcept C62520636 @default.
- W2282458421 hasConcept C6557445 @default.
- W2282458421 hasConcept C73555534 @default.
- W2282458421 hasConcept C739882 @default.
- W2282458421 hasConcept C86803240 @default.
- W2282458421 hasConcept C98045186 @default.
- W2282458421 hasConceptScore W2282458421C108010975 @default.
- W2282458421 hasConceptScore W2282458421C111919701 @default.
- W2282458421 hasConceptScore W2282458421C121332964 @default.
- W2282458421 hasConceptScore W2282458421C124101348 @default.
- W2282458421 hasConceptScore W2282458421C1276947 @default.
- W2282458421 hasConceptScore W2282458421C13662910 @default.
- W2282458421 hasConceptScore W2282458421C154945302 @default.
- W2282458421 hasConceptScore W2282458421C166957645 @default.
- W2282458421 hasConceptScore W2282458421C170858558 @default.
- W2282458421 hasConceptScore W2282458421C202474056 @default.
- W2282458421 hasConceptScore W2282458421C205649164 @default.
- W2282458421 hasConceptScore W2282458421C2779343474 @default.
- W2282458421 hasConceptScore W2282458421C2779662365 @default.
- W2282458421 hasConceptScore W2282458421C2781238097 @default.
- W2282458421 hasConceptScore W2282458421C31972630 @default.
- W2282458421 hasConceptScore W2282458421C41008148 @default.
- W2282458421 hasConceptScore W2282458421C49937458 @default.
- W2282458421 hasConceptScore W2282458421C62520636 @default.
- W2282458421 hasConceptScore W2282458421C6557445 @default.
- W2282458421 hasConceptScore W2282458421C73555534 @default.
- W2282458421 hasConceptScore W2282458421C739882 @default.
- W2282458421 hasConceptScore W2282458421C86803240 @default.
- W2282458421 hasConceptScore W2282458421C98045186 @default.
- W2282458421 hasLocation W22824584211 @default.
- W2282458421 hasOpenAccess W2282458421 @default.
- W2282458421 hasPrimaryLocation W22824584211 @default.
- W2282458421 hasRelatedWork W1437144967 @default.
- W2282458421 hasRelatedWork W1503430676 @default.
- W2282458421 hasRelatedWork W1758470730 @default.
- W2282458421 hasRelatedWork W1913989993 @default.
- W2282458421 hasRelatedWork W192493 @default.
- W2282458421 hasRelatedWork W1984758696 @default.
- W2282458421 hasRelatedWork W2128358762 @default.
- W2282458421 hasRelatedWork W2130349088 @default.
- W2282458421 hasRelatedWork W2133409295 @default.
- W2282458421 hasRelatedWork W2167770061 @default.
- W2282458421 hasRelatedWork W2273965467 @default.
- W2282458421 hasRelatedWork W2748219818 @default.
- W2282458421 hasRelatedWork W2792207151 @default.
- W2282458421 hasRelatedWork W2891433779 @default.
- W2282458421 hasRelatedWork W2908767862 @default.
- W2282458421 hasRelatedWork W2982947922 @default.
- W2282458421 hasRelatedWork W3008130353 @default.
- W2282458421 hasRelatedWork W3017093181 @default.
- W2282458421 hasRelatedWork W65642710 @default.
- W2282458421 hasRelatedWork W945028232 @default.
- W2282458421 isParatext "false" @default.
- W2282458421 isRetracted "false" @default.
- W2282458421 magId "2282458421" @default.
- W2282458421 workType "book" @default.