Matches in SemOpenAlex for { <https://semopenalex.org/work/W228248788> ?p ?o ?g. }
Showing items 1 to 42 of
42
with 100 items per page.
- W228248788 abstract "Abstract : This grant investigates issues in improving the accuracy of machine learning systems. The classic machine learning paradigm for prediction has been to learn a set of decision structures or models from a training set and select one for prediction on unseen test data. Rather than select a single node from the set, the focus of this project's research has been to combine the prediction of the learned models to form an improved estimate. The two fronts of this research are regression and classification. In the realm of regression, the task is to predict a single continuous value for an example. The majority of research in this area has focused on simple linear combination of the learned models. The nature of these weights may span from being highly regularized completely unconstrained. A set of weights is considered highly regularized if they are all positive, they sum to one, or they are uniform. Completely unconstrained weights have no restrictions and may be derived by methods like ordinary least squares regression. The degree of regularization required depends on the particular regression problem. The project has developed a technique called PCRY, which automatically estimates the appropriate degrease regularization for a given data set. The basic idea is to use the eigen structure of the model predictions on the training data to derive a continuum of possible weight sets ranging front highly regularized to completely unconstrained. Cross validation is used to estimate which weight set is most appropriate." @default.
- W228248788 created "2016-06-24" @default.
- W228248788 creator A5018321151 @default.
- W228248788 date "1997-03-13" @default.
- W228248788 modified "2023-09-24" @default.
- W228248788 title "Issues in Scaling Up Machine Learning" @default.
- W228248788 doi "https://doi.org/10.21236/ada337740" @default.
- W228248788 hasPublicationYear "1997" @default.
- W228248788 type Work @default.
- W228248788 sameAs 228248788 @default.
- W228248788 citedByCount "0" @default.
- W228248788 crossrefType "report" @default.
- W228248788 hasAuthorship W228248788A5018321151 @default.
- W228248788 hasConcept C119857082 @default.
- W228248788 hasConcept C154945302 @default.
- W228248788 hasConcept C2524010 @default.
- W228248788 hasConcept C33923547 @default.
- W228248788 hasConcept C41008148 @default.
- W228248788 hasConcept C99844830 @default.
- W228248788 hasConceptScore W228248788C119857082 @default.
- W228248788 hasConceptScore W228248788C154945302 @default.
- W228248788 hasConceptScore W228248788C2524010 @default.
- W228248788 hasConceptScore W228248788C33923547 @default.
- W228248788 hasConceptScore W228248788C41008148 @default.
- W228248788 hasConceptScore W228248788C99844830 @default.
- W228248788 hasLocation W2282487881 @default.
- W228248788 hasOpenAccess W228248788 @default.
- W228248788 hasPrimaryLocation W2282487881 @default.
- W228248788 hasRelatedWork W2961085424 @default.
- W228248788 hasRelatedWork W3046775127 @default.
- W228248788 hasRelatedWork W3107474891 @default.
- W228248788 hasRelatedWork W3209574120 @default.
- W228248788 hasRelatedWork W4205958290 @default.
- W228248788 hasRelatedWork W4285260836 @default.
- W228248788 hasRelatedWork W4286629047 @default.
- W228248788 hasRelatedWork W4306321456 @default.
- W228248788 hasRelatedWork W4306674287 @default.
- W228248788 hasRelatedWork W4224009465 @default.
- W228248788 isParatext "false" @default.
- W228248788 isRetracted "false" @default.
- W228248788 magId "228248788" @default.
- W228248788 workType "report" @default.