Matches in SemOpenAlex for { <https://semopenalex.org/work/W2283487981> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2283487981 abstract "We consider the problem of detecting building dominant scatterers using Compressive Sensing (CS) with applications to throughthe-wall radar and urban sensing. We use oblique illumination, which specially enhances the radar returns from the corners formed by the orthogonal intersection of two walls. This paper uses a novel type of image descriptor: the intensity correlogram. The intensity correlogram of each through-the-wall radar image pixel encodes information about spatial correlation of intensities. The proposed technique compares the known intensity correlogram of the scattering response of an isolated canonical corner reflector with the correlogram of the received radar signal within a correlation matching framework. The correlation matching procedure directly promotes sparse solution avoiding solving the l1-norm constrained optimization problem encountered in conventional CS. Sensing through building walls using standard continuous wave radar to gain vision into concealed scenes is the aim of Through-theWall Radar Imaging (TWRI) [1]. The ability to remotely and reliably detect the presence of humans and objects of interest through opaque structures has numerous applications in civilian, law enforcement and military sectors. In this paper, we address the problem of detecting building interior structures for TWR and urban sensing applications. Doppler signatures or change detection techniques cannot be applied since targets and clutter are both of the same nature. Usually, stationary target detection is to be performed subsequent to image formation. In general, the TWR image is processed in such a way that the location of strong scatterers is revealed. Image-based detectors performance is linked to image resolution, which is associated to large bandwidth signals and long antenna array apertures. However, this demands acquisition and processing of large amounts of data. Moreover, most of the existing TWRI systems, employ data-independent processing techniques for image formation, whose clutter suppression capabilities are poor impeding the application of simple thresholding detection. Even endowed with an effective imaging method, imagebased detection faces many challenges, including strong scattering from the exterior walls and large variety of possible indoor targets which look similar in the TWR image. Thus, classification is usually performed as a post-processing step. The contribution of this paper is the development of a feature-based corner detector for building interior structure identification which encompasses the two tasks of detection and classification. Unlike majority of the feature detection methods that are applied in the image domain, the proposed approach exploits prior information of construction practices. The building layout is usually composed of exterior and interior walls which are parallel or perpendicular to each other. We assume a flexibility in radar operation which allows proper This work was partially supported by the Spanish Ministry of Science and Innovation (Ministerio de Ciencia e Innovacion) under project TEC201129006-C03-02 (GRE3N-LINK-MAC), by the European Commission in the framework of the FP7 Network of Excellence in Wireless COMmunications NEWCOM# (Grant agreement no. 318306), by the Catalan Government under grant 2009 SGR 891 and by the European Cooperation in Science and Technology under project COST Action IC0902. D o w n − R a n g e ( m e te rs ) Cross−Range (meters) (a) −2 −1 0 1 2 2 3 4 5 6 −25 −20 −15 −10 −5 0 D o w n − R a n g e ( m e te rs ) Cross−Range (meters) (b) −2 −1 0 1 2 2 3 4 5 6 −25 −20 −15 −10 −5 0 Fig. 1: Resulting images: (a) DS Beamforming, (b) CorrelationMatching. angular radar illuminations, thereby avoiding the front wall returns and preserving the corner features created by the junction of walls of a room. Estimating dominant scatterers such as corners allows the inference of building interior structure. This same idea was exploited in [2], [3], where a building feature based approach was applied to estimate the type and location of different canonical scattering mechanisms. This paper uses a novel type of image descriptor: the intensity correlogram. The intensity correlogram of each through-thewall radar image pixel encodes information about spatial correlation of intensities. The basic strategy adopted here is to compare the known intensity correlogram of the scattering response of an isolated canonical corner reflector with the correlogram of the received radar signal within a correlation matching framework. The correlation matching procedure directly promotes sparse solution avoiding solving the l1-norm constrained optimization problem encountered in conventional CS [4]. The feature-based nature of the proposed detector enables corner separation from other indoor scatterers such as furniture or humans. Simulation results show that the use of spatial intensity correlation makes the detection performance superior to that of using raw signal matching or image matching. Simulation results support this paper. Fig. 1(b) shows the image of a room with 3 corners (white circles) and a human obtained with the proposed correlation matching approach. Fig. 1(b) have less clutter compared to the corresponding DS beamforming image shown in Fig. 1(a). Moreover, the point target has also been diminished due to the feature-based nature of the detector." @default.
- W2283487981 created "2016-06-24" @default.
- W2283487981 creator A5007661434 @default.
- W2283487981 creator A5017911519 @default.
- W2283487981 creator A5026746581 @default.
- W2283487981 creator A5083732517 @default.
- W2283487981 date "2013-09-01" @default.
- W2283487981 modified "2023-09-26" @default.
- W2283487981 title "Correlation Matching Approach for Through-Wall Corner Detection" @default.
- W2283487981 cites W1972756357 @default.
- W2283487981 cites W2000631524 @default.
- W2283487981 cites W2014696688 @default.
- W2283487981 cites W2016639027 @default.
- W2283487981 cites W2019918865 @default.
- W2283487981 cites W2030719793 @default.
- W2283487981 cites W2044059990 @default.
- W2283487981 cites W2097381220 @default.
- W2283487981 cites W2115948820 @default.
- W2283487981 cites W2118570309 @default.
- W2283487981 cites W2157745087 @default.
- W2283487981 cites W2183438047 @default.
- W2283487981 cites W640945449 @default.
- W2283487981 hasPublicationYear "2013" @default.
- W2283487981 type Work @default.
- W2283487981 sameAs 2283487981 @default.
- W2283487981 citedByCount "0" @default.
- W2283487981 crossrefType "journal-article" @default.
- W2283487981 hasAuthorship W2283487981A5007661434 @default.
- W2283487981 hasAuthorship W2283487981A5017911519 @default.
- W2283487981 hasAuthorship W2283487981A5026746581 @default.
- W2283487981 hasAuthorship W2283487981A5083732517 @default.
- W2283487981 hasConcept C102290492 @default.
- W2283487981 hasConcept C10929652 @default.
- W2283487981 hasConcept C117818321 @default.
- W2283487981 hasConcept C120665830 @default.
- W2283487981 hasConcept C121332964 @default.
- W2283487981 hasConcept C127313418 @default.
- W2283487981 hasConcept C132094186 @default.
- W2283487981 hasConcept C153180895 @default.
- W2283487981 hasConcept C154945302 @default.
- W2283487981 hasConcept C196070930 @default.
- W2283487981 hasConcept C31972630 @default.
- W2283487981 hasConcept C41008148 @default.
- W2283487981 hasConcept C554190296 @default.
- W2283487981 hasConcept C59584813 @default.
- W2283487981 hasConcept C62649853 @default.
- W2283487981 hasConcept C76155785 @default.
- W2283487981 hasConceptScore W2283487981C102290492 @default.
- W2283487981 hasConceptScore W2283487981C10929652 @default.
- W2283487981 hasConceptScore W2283487981C117818321 @default.
- W2283487981 hasConceptScore W2283487981C120665830 @default.
- W2283487981 hasConceptScore W2283487981C121332964 @default.
- W2283487981 hasConceptScore W2283487981C127313418 @default.
- W2283487981 hasConceptScore W2283487981C132094186 @default.
- W2283487981 hasConceptScore W2283487981C153180895 @default.
- W2283487981 hasConceptScore W2283487981C154945302 @default.
- W2283487981 hasConceptScore W2283487981C196070930 @default.
- W2283487981 hasConceptScore W2283487981C31972630 @default.
- W2283487981 hasConceptScore W2283487981C41008148 @default.
- W2283487981 hasConceptScore W2283487981C554190296 @default.
- W2283487981 hasConceptScore W2283487981C59584813 @default.
- W2283487981 hasConceptScore W2283487981C62649853 @default.
- W2283487981 hasConceptScore W2283487981C76155785 @default.
- W2283487981 hasLocation W22834879811 @default.
- W2283487981 hasOpenAccess W2283487981 @default.
- W2283487981 hasPrimaryLocation W22834879811 @default.
- W2283487981 hasRelatedWork W1505606305 @default.
- W2283487981 hasRelatedWork W1547779510 @default.
- W2283487981 hasRelatedWork W1548635933 @default.
- W2283487981 hasRelatedWork W2033077554 @default.
- W2283487981 hasRelatedWork W2048680309 @default.
- W2283487981 hasRelatedWork W2054053332 @default.
- W2283487981 hasRelatedWork W213910005 @default.
- W2283487981 hasRelatedWork W2354764129 @default.
- W2283487981 hasRelatedWork W2367818718 @default.
- W2283487981 hasRelatedWork W2789266821 @default.
- W2283487981 hasRelatedWork W2811297383 @default.
- W2283487981 hasRelatedWork W2889349961 @default.
- W2283487981 hasRelatedWork W2901976902 @default.
- W2283487981 hasRelatedWork W2923899505 @default.
- W2283487981 hasRelatedWork W2964109982 @default.
- W2283487981 hasRelatedWork W3129813743 @default.
- W2283487981 hasRelatedWork W3188333065 @default.
- W2283487981 hasRelatedWork W2184695162 @default.
- W2283487981 hasRelatedWork W2862862080 @default.
- W2283487981 hasRelatedWork W2926507493 @default.
- W2283487981 isParatext "false" @default.
- W2283487981 isRetracted "false" @default.
- W2283487981 magId "2283487981" @default.
- W2283487981 workType "article" @default.