Matches in SemOpenAlex for { <https://semopenalex.org/work/W2283599234> ?p ?o ?g. }
- W2283599234 endingPage "1423" @default.
- W2283599234 startingPage "1408" @default.
- W2283599234 abstract "This paper addresses the problem of separating audio sources from time-varying convolutive mixtures. We propose a probabilistic framework based on the local complex-Gaussian model combined with non-negative matrix factorization. The time-varying mixing filters are modeled by a continuous temporal stochastic process. We present a variational expectation-maximization (VEM) algorithm that employs a Kalman smoother to estimate the time-varying mixing matrix, and that jointly estimate the source parameters. The sound sources are then separated by Wiener filters constructed with the estimators provided by the VEM algorithm. Extensive experiments on simulated data show that the proposed method outperforms a blockwise version of a state-of-the-art baseline method." @default.
- W2283599234 created "2016-06-24" @default.
- W2283599234 creator A5001052072 @default.
- W2283599234 creator A5020392160 @default.
- W2283599234 creator A5041055085 @default.
- W2283599234 creator A5066621495 @default.
- W2283599234 creator A5078307335 @default.
- W2283599234 date "2016-08-01" @default.
- W2283599234 modified "2023-10-11" @default.
- W2283599234 title "A Variational EM Algorithm for the Separation of Time-Varying Convolutive Audio Mixtures" @default.
- W2283599234 cites W1542838137 @default.
- W2283599234 cites W165956390 @default.
- W2283599234 cites W188967299 @default.
- W2283599234 cites W1902027874 @default.
- W2283599234 cites W1967504554 @default.
- W2283599234 cites W1981463705 @default.
- W2283599234 cites W1981755271 @default.
- W2283599234 cites W2013608223 @default.
- W2283599234 cites W2014768838 @default.
- W2283599234 cites W2031744243 @default.
- W2283599234 cites W2039844283 @default.
- W2283599234 cites W2050551142 @default.
- W2283599234 cites W2055401280 @default.
- W2283599234 cites W2067145564 @default.
- W2283599234 cites W2073511607 @default.
- W2283599234 cites W2098918476 @default.
- W2283599234 cites W2099048037 @default.
- W2283599234 cites W2113564594 @default.
- W2283599234 cites W2113990625 @default.
- W2283599234 cites W2117042571 @default.
- W2283599234 cites W2117678320 @default.
- W2283599234 cites W2127851351 @default.
- W2283599234 cites W2128911505 @default.
- W2283599234 cites W2129171989 @default.
- W2283599234 cites W2134807719 @default.
- W2283599234 cites W2137048499 @default.
- W2283599234 cites W2139302694 @default.
- W2283599234 cites W2142959178 @default.
- W2283599234 cites W2143027228 @default.
- W2283599234 cites W2147665979 @default.
- W2283599234 cites W2149273154 @default.
- W2283599234 cites W2150415460 @default.
- W2283599234 cites W2155323221 @default.
- W2283599234 cites W2162056481 @default.
- W2283599234 cites W2166682639 @default.
- W2283599234 cites W2169872459 @default.
- W2283599234 cites W2220224365 @default.
- W2283599234 cites W3147539069 @default.
- W2283599234 cites W4205778870 @default.
- W2283599234 doi "https://doi.org/10.1109/taslp.2016.2554286" @default.
- W2283599234 hasPublicationYear "2016" @default.
- W2283599234 type Work @default.
- W2283599234 sameAs 2283599234 @default.
- W2283599234 citedByCount "35" @default.
- W2283599234 countsByYear W22835992342016 @default.
- W2283599234 countsByYear W22835992342017 @default.
- W2283599234 countsByYear W22835992342018 @default.
- W2283599234 countsByYear W22835992342019 @default.
- W2283599234 countsByYear W22835992342020 @default.
- W2283599234 countsByYear W22835992342021 @default.
- W2283599234 countsByYear W22835992342022 @default.
- W2283599234 crossrefType "journal-article" @default.
- W2283599234 hasAuthorship W2283599234A5001052072 @default.
- W2283599234 hasAuthorship W2283599234A5020392160 @default.
- W2283599234 hasAuthorship W2283599234A5041055085 @default.
- W2283599234 hasAuthorship W2283599234A5066621495 @default.
- W2283599234 hasAuthorship W2283599234A5078307335 @default.
- W2283599234 hasBestOaLocation W22835992342 @default.
- W2283599234 hasConcept C105795698 @default.
- W2283599234 hasConcept C106487976 @default.
- W2283599234 hasConcept C11413529 @default.
- W2283599234 hasConcept C121332964 @default.
- W2283599234 hasConcept C138777275 @default.
- W2283599234 hasConcept C152671427 @default.
- W2283599234 hasConcept C154945302 @default.
- W2283599234 hasConcept C157286648 @default.
- W2283599234 hasConcept C158693339 @default.
- W2283599234 hasConcept C159985019 @default.
- W2283599234 hasConcept C163716315 @default.
- W2283599234 hasConcept C182081679 @default.
- W2283599234 hasConcept C18537770 @default.
- W2283599234 hasConcept C185429906 @default.
- W2283599234 hasConcept C192562407 @default.
- W2283599234 hasConcept C2776864781 @default.
- W2283599234 hasConcept C33923547 @default.
- W2283599234 hasConcept C41008148 @default.
- W2283599234 hasConcept C42355184 @default.
- W2283599234 hasConcept C49781872 @default.
- W2283599234 hasConcept C49937458 @default.
- W2283599234 hasConcept C62520636 @default.
- W2283599234 hasConceptScore W2283599234C105795698 @default.
- W2283599234 hasConceptScore W2283599234C106487976 @default.
- W2283599234 hasConceptScore W2283599234C11413529 @default.
- W2283599234 hasConceptScore W2283599234C121332964 @default.
- W2283599234 hasConceptScore W2283599234C138777275 @default.
- W2283599234 hasConceptScore W2283599234C152671427 @default.
- W2283599234 hasConceptScore W2283599234C154945302 @default.
- W2283599234 hasConceptScore W2283599234C157286648 @default.