Matches in SemOpenAlex for { <https://semopenalex.org/work/W2283925087> ?p ?o ?g. }
- W2283925087 endingPage "6" @default.
- W2283925087 startingPage "6" @default.
- W2283925087 abstract "This research proposes a hierarchical aggregation approach using Data Envelopment Analysis (DEA) and Analytic Hierarchy Process (AHP) for indicators. The core logic of the proposed approach is to reflect the hierarchical structures of indicators and their relative priorities in constructing composite indicators (CIs), simultaneously. Under hierarchical structures, the indicators of similar characteristics can be grouped into sub-categories and further into categories. According to this approach, we define a domain of composite losses, i.e., a reduction in CI values, based on two sets of weights. The first set represents the weights of indicators for each Decision Making Unit (DMU) with the minimal composite loss, and the second set represents the weights of indicators bounded by AHP with the maximal composite loss. Using a parametric distance model, we explore various ranking positions for DMUs while the indicator weights obtained from a three-level DEA-based CI model shift towards the corresponding weights bounded by AHP. An illustrative example of road safety performance indicators (SPIs) for a set of European countries highlights the usefulness of the proposed approach." @default.
- W2283925087 created "2016-06-24" @default.
- W2283925087 creator A5001091940 @default.
- W2283925087 date "2016-01-20" @default.
- W2283925087 modified "2023-09-30" @default.
- W2283925087 title "A Hierarchical Aggregation Approach for Indicators Based on Data Envelopment Analysis and Analytic Hierarchy Process" @default.
- W2283925087 cites W1582557684 @default.
- W2283925087 cites W1971253634 @default.
- W2283925087 cites W1971729061 @default.
- W2283925087 cites W1975422839 @default.
- W2283925087 cites W1980374759 @default.
- W2283925087 cites W1990808695 @default.
- W2283925087 cites W1991811890 @default.
- W2283925087 cites W1996601681 @default.
- W2283925087 cites W1999828312 @default.
- W2283925087 cites W2006096769 @default.
- W2283925087 cites W2011250449 @default.
- W2283925087 cites W2011312444 @default.
- W2283925087 cites W2016800001 @default.
- W2283925087 cites W2016838499 @default.
- W2283925087 cites W2020400228 @default.
- W2283925087 cites W2043273107 @default.
- W2283925087 cites W2048039127 @default.
- W2283925087 cites W2048654069 @default.
- W2283925087 cites W2059124314 @default.
- W2283925087 cites W2063182348 @default.
- W2283925087 cites W2072587141 @default.
- W2283925087 cites W2076004505 @default.
- W2283925087 cites W2076452041 @default.
- W2283925087 cites W2079273626 @default.
- W2283925087 cites W2081587212 @default.
- W2283925087 cites W2083498226 @default.
- W2283925087 cites W2083995756 @default.
- W2283925087 cites W2092418303 @default.
- W2283925087 cites W2092553756 @default.
- W2283925087 cites W2093165291 @default.
- W2283925087 cites W2095352655 @default.
- W2283925087 cites W2097213347 @default.
- W2283925087 cites W2116639745 @default.
- W2283925087 cites W2120456882 @default.
- W2283925087 cites W2139823292 @default.
- W2283925087 cites W2143871320 @default.
- W2283925087 cites W2144312094 @default.
- W2283925087 cites W2154675174 @default.
- W2283925087 cites W3125604211 @default.
- W2283925087 cites W3144680440 @default.
- W2283925087 cites W4236154091 @default.
- W2283925087 cites W4376848664 @default.
- W2283925087 doi "https://doi.org/10.3390/systems4010006" @default.
- W2283925087 hasPublicationYear "2016" @default.
- W2283925087 type Work @default.
- W2283925087 sameAs 2283925087 @default.
- W2283925087 citedByCount "6" @default.
- W2283925087 countsByYear W22839250872016 @default.
- W2283925087 countsByYear W22839250872018 @default.
- W2283925087 countsByYear W22839250872020 @default.
- W2283925087 countsByYear W22839250872022 @default.
- W2283925087 countsByYear W22839250872023 @default.
- W2283925087 crossrefType "journal-article" @default.
- W2283925087 hasAuthorship W2283925087A5001091940 @default.
- W2283925087 hasBestOaLocation W22839250871 @default.
- W2283925087 hasConcept C105795698 @default.
- W2283925087 hasConcept C111919701 @default.
- W2283925087 hasConcept C117251300 @default.
- W2283925087 hasConcept C124101348 @default.
- W2283925087 hasConcept C134306372 @default.
- W2283925087 hasConcept C149782125 @default.
- W2283925087 hasConcept C154945302 @default.
- W2283925087 hasConcept C162324750 @default.
- W2283925087 hasConcept C177264268 @default.
- W2283925087 hasConcept C189430467 @default.
- W2283925087 hasConcept C199360897 @default.
- W2283925087 hasConcept C22088475 @default.
- W2283925087 hasConcept C2992405062 @default.
- W2283925087 hasConcept C31170391 @default.
- W2283925087 hasConcept C33923547 @default.
- W2283925087 hasConcept C34388435 @default.
- W2283925087 hasConcept C34447519 @default.
- W2283925087 hasConcept C41008148 @default.
- W2283925087 hasConcept C42475967 @default.
- W2283925087 hasConcept C87345402 @default.
- W2283925087 hasConcept C98045186 @default.
- W2283925087 hasConceptScore W2283925087C105795698 @default.
- W2283925087 hasConceptScore W2283925087C111919701 @default.
- W2283925087 hasConceptScore W2283925087C117251300 @default.
- W2283925087 hasConceptScore W2283925087C124101348 @default.
- W2283925087 hasConceptScore W2283925087C134306372 @default.
- W2283925087 hasConceptScore W2283925087C149782125 @default.
- W2283925087 hasConceptScore W2283925087C154945302 @default.
- W2283925087 hasConceptScore W2283925087C162324750 @default.
- W2283925087 hasConceptScore W2283925087C177264268 @default.
- W2283925087 hasConceptScore W2283925087C189430467 @default.
- W2283925087 hasConceptScore W2283925087C199360897 @default.
- W2283925087 hasConceptScore W2283925087C22088475 @default.
- W2283925087 hasConceptScore W2283925087C2992405062 @default.
- W2283925087 hasConceptScore W2283925087C31170391 @default.
- W2283925087 hasConceptScore W2283925087C33923547 @default.
- W2283925087 hasConceptScore W2283925087C34388435 @default.