Matches in SemOpenAlex for { <https://semopenalex.org/work/W2283979211> ?p ?o ?g. }
- W2283979211 abstract "This thesis comprises of three results each of which dealt in separate chapters. First chapter is of introductory nature, as the title suggest. And the other three chapters are devoted to three different problems. Following is a brief introduction to our results. 1. Let G be any finite abelian group of rank r with invariants n1, n2, · · · , nr. In other words, G = Zn1 ⊕Zn2 ⊕· · ·⊕Znr where ni’s are integers satisfying 1 < n1|n2| · · · |nr. The Davenport constant of a group G is defined as the smallest positive integer t such that every sequence of length t of elements of G has a non-empty zero-sum subsequence. It has been conjectured by Śliwa that, D(G) ≤ ∑i=1 ni. Thinking in the direction of this conjecture we have obtained the following upper bound on Davenport constant D(G), of G, D(G) ≤ nr+nr−1+(c(3)−1)nr−2+(c(4)−1)nr−3+· · ·+(c(r)−1)n1+1, where c(i)’s are Alon-Dubiner constants [10] for respective i’s. Also we shall give an application of Davenport’s constant to Quadratic sieve. 2. LetG be a finite abelian group with exp(G) = e. Let s(G) (respectively, η(G)) be the minimal positive integer t with the property that any sequence S of length t of elements ofG contains an e-term subsequence (respectively, a non-empty subsequence of length at most e) of S with sum zero. For the group of rank at most two this constant has been determined completely (see [45]). Looking at the problem for groups of rank greater that 2 gave rise to this result. Our problem is to determine value of s(C nm) under some constraints on n,m, and r. Let n,m and r be positive integers andm ≥ 3. Furthermore, η(C m) = ar(m− 1) + 1, for some constant ar depending on r and n is a fixed integer greater than or equal to, mr(c(r)m− ar(m− r) +m− 3)(m− 1)− (m+ 1) + (m+ 1)(ar + 1) m(m+ 1)(ar + 1) and s(C n) = (ar +1)(n− 1) + 1. In the above lower bound on n, c(r) is the Alon-Dubiner constant. Then s(C nm) = (ar + 1)(nm− 1) + 1. 3. Given an abelian group G of order n, and a finite non-empty subset A of integers, the Davenport constant of G with weight A, denoted by DA(G), is defined to be the least positive integer t such that every sequence (x1, · · · , xt) with xi ∈ G has a non-empty subsequence (xj1 , · · · , xjl) and ai ∈ A such that ∑l i=1 aixji = 0. Similarly, EA(G) is defined to be the least positive integer t such that every sequence (x1, · · · , xt) of length t of elements ofG has a subsequence (xj1 , · · · , xjn) such that ∑n i=1 aixji = 0, for some ai ∈ A. When G is of order n, one considers A to be a non-empty subset of {1, · · · , n− 1}. If G is the cyclic group Z/nZ we denote EA(G) and DA(G) by EA(n) and DA(n) respectively. Here we extend some results in an article of Adhikari et al. [5] and determine bounds for DRn(n) and ERn(n), where Rn = {x2 : x ∈ (Z/nZ)∗} and (Z/nZ) is a group of units modulo n. We follow some line of arguments in [5] and use a recent result of Yuan and Zeng [79], a theorem due to I. Chowla [24] and Kneser’s theorem [52]." @default.
- W2283979211 created "2016-06-24" @default.
- W2283979211 creator A5062881576 @default.
- W2283979211 date "2011-01-01" @default.
- W2283979211 modified "2023-09-23" @default.
- W2283979211 title "Some Zero Sum Problems in combinatorial number theory" @default.
- W2283979211 cites W1415576118 @default.
- W2283979211 cites W1503705433 @default.
- W2283979211 cites W1574185819 @default.
- W2283979211 cites W1576535119 @default.
- W2283979211 cites W1592261758 @default.
- W2283979211 cites W1600928619 @default.
- W2283979211 cites W1785226876 @default.
- W2283979211 cites W1965490996 @default.
- W2283979211 cites W1967316826 @default.
- W2283979211 cites W1970671005 @default.
- W2283979211 cites W1978948998 @default.
- W2283979211 cites W1982101609 @default.
- W2283979211 cites W1982539548 @default.
- W2283979211 cites W1984898741 @default.
- W2283979211 cites W1988568430 @default.
- W2283979211 cites W1988650496 @default.
- W2283979211 cites W1990678489 @default.
- W2283979211 cites W1994786975 @default.
- W2283979211 cites W19950128 @default.
- W2283979211 cites W1995658240 @default.
- W2283979211 cites W1997103645 @default.
- W2283979211 cites W2004640394 @default.
- W2283979211 cites W2011344064 @default.
- W2283979211 cites W2011434290 @default.
- W2283979211 cites W2020204562 @default.
- W2283979211 cites W2022308311 @default.
- W2283979211 cites W2027443207 @default.
- W2283979211 cites W2027626405 @default.
- W2283979211 cites W2028369791 @default.
- W2283979211 cites W2030736010 @default.
- W2283979211 cites W2031626166 @default.
- W2283979211 cites W2051793589 @default.
- W2283979211 cites W2054185123 @default.
- W2283979211 cites W2056933883 @default.
- W2283979211 cites W2070302103 @default.
- W2283979211 cites W2072060113 @default.
- W2283979211 cites W2073415400 @default.
- W2283979211 cites W2073661780 @default.
- W2283979211 cites W2084729356 @default.
- W2283979211 cites W2086768519 @default.
- W2283979211 cites W2088686986 @default.
- W2283979211 cites W2091022463 @default.
- W2283979211 cites W2091770425 @default.
- W2283979211 cites W2093013152 @default.
- W2283979211 cites W2097011052 @default.
- W2283979211 cites W2100823387 @default.
- W2283979211 cites W2121001629 @default.
- W2283979211 cites W2148534827 @default.
- W2283979211 cites W2165940491 @default.
- W2283979211 cites W2168989363 @default.
- W2283979211 cites W2320738701 @default.
- W2283979211 cites W2330778380 @default.
- W2283979211 cites W2486137719 @default.
- W2283979211 cites W2495618919 @default.
- W2283979211 cites W2637780205 @default.
- W2283979211 cites W2786033413 @default.
- W2283979211 cites W2791520396 @default.
- W2283979211 cites W2799237516 @default.
- W2283979211 cites W3022742972 @default.
- W2283979211 cites W3105994037 @default.
- W2283979211 cites W37379289 @default.
- W2283979211 cites W47372315 @default.
- W2283979211 cites W81446200 @default.
- W2283979211 cites W842301775 @default.
- W2283979211 hasPublicationYear "2011" @default.
- W2283979211 type Work @default.
- W2283979211 sameAs 2283979211 @default.
- W2283979211 citedByCount "2" @default.
- W2283979211 countsByYear W22839792112021 @default.
- W2283979211 crossrefType "dissertation" @default.
- W2283979211 hasAuthorship W2283979211A5062881576 @default.
- W2283979211 hasConcept C114614502 @default.
- W2283979211 hasConcept C121332964 @default.
- W2283979211 hasConcept C134306372 @default.
- W2283979211 hasConcept C136170076 @default.
- W2283979211 hasConcept C137877099 @default.
- W2283979211 hasConcept C138885662 @default.
- W2283979211 hasConcept C164226766 @default.
- W2283979211 hasConcept C170006305 @default.
- W2283979211 hasConcept C185592680 @default.
- W2283979211 hasConcept C199360897 @default.
- W2283979211 hasConcept C2777027219 @default.
- W2283979211 hasConcept C2778112365 @default.
- W2283979211 hasConcept C2780813799 @default.
- W2283979211 hasConcept C2780990831 @default.
- W2283979211 hasConcept C2781311116 @default.
- W2283979211 hasConcept C33923547 @default.
- W2283979211 hasConcept C34388435 @default.
- W2283979211 hasConcept C41008148 @default.
- W2283979211 hasConcept C41895202 @default.
- W2283979211 hasConcept C55493867 @default.
- W2283979211 hasConcept C62520636 @default.
- W2283979211 hasConcept C97137487 @default.
- W2283979211 hasConceptScore W2283979211C114614502 @default.