Matches in SemOpenAlex for { <https://semopenalex.org/work/W2284012022> ?p ?o ?g. }
- W2284012022 abstract "of Dissertation My doctoral work consists of three projects. The first project is joint work with A. Suciu and G. Zhao described in more details in Chapter 2 and 3 of this dissertation. Chapter 2 is based on the paper [82], where we exploit the classical correspondence between finitely generated abelian groups and abelian complex algebraic reductive groups to study the intersection theory of translated subgroups in an abelian complex algebraic reductive group, with special emphasis on intersections of (torsion) translated subtori in an algebraic torus. Chapter 3 is based on the paper [83], we present a method for deciding when a regular abelian cover of a finite CW-complex has finite Betti numbers. To start with, we describe a natural parameter space for all regular covers of a finite CW-complex X, with group of deck transformations a fixed abelian group A, which in the case of free abelian covers of rank r coincides with the Grassmanian of r-planes in H(X,Q). Inside this parameter space, there is a subset ΩA(X) consisting of all the covers with finite Betti numbers up to degree i. Building on work of Dwyer and Fried, we show how to compute these sets in terms of the jump loci for homology with coefficients in rank 1 local systems on X. For certain spaces, such as smooth, quasi-projective varieties, the generalized Dwyer–Fried invariants that we introduce here can be computed in terms of intersections of algebraic subtori in the character group. For many spaces of interest, the homological finiteness of abelian covers can be tested through the corresponding free abelian covers. Yet in general, abelian covers exhibit different homological finiteness properties than their free abelian counterparts. iv The second project is joint work with M. Levine and G. Zhao described in more details in Chapter 4 of this dissertation, which is based on the paper [91]. We define the algebraic elliptic cohomology theory coming from Krichever’s elliptic genus as an oriented cohomology theory on smooth varieties over an arbitrary perfect field. We show that in the algebraic cobordism ring with rational coefficients, the ideal generated by differences of classical flops coincides with the kernel of Krichever’s elliptic genus. This generalizes a theorem of B. Totaro in the complex analytic setting. The third project consists of two parts. Chapter 5 is joint work with N. Guay, where we give a double loop presentation of the deformed double current algebras, which are deformations of the central extension of the double current algebras g[u, v], for a simple Lie algebra g. We prove some nice properties of the algebras using the double loop presentation. Especially, we construct a central element of the deformed double current algebra. Chapter 6 is joint work with V. Toledano Laredo. In [10], Calaque-Enriquez-Etingof constructed the universal KZB equation, which is a flat connection on the configuration space of n points on an elliptic curve. They show that its monodromy yields an isomorphism between the completions of the group algebra of the elliptic braid group of type An−1 and the holonomy algebra of coefficients of the KZB connection. We generalized this connection and the corresponding formality result to an arbitrary root system in [91]. We also gave two concrete incarnations of the connection: one valued in the rational Cherednik algebra of the corresponding Weyl group, the other in the double deformed current algebra D(g) of the corresponding Lie algebra g. The latter is a deformation of the double current algebra g[u, v] recently defined by Guay in [34, 35], and gives rise to an elliptic version of the Casimir connection." @default.
- W2284012022 created "2016-06-24" @default.
- W2284012022 creator A5087751242 @default.
- W2284012022 date "2014-01-01" @default.
- W2284012022 modified "2023-09-27" @default.
- W2284012022 title "Three contributions to topology, algebraic geometry and representation theory: homological finiteness of abelian covers, algebraic elliptic cohomology theory and monodromy theorems in the elliptic setting." @default.
- W2284012022 cites W1499578268 @default.
- W2284012022 cites W1521903749 @default.
- W2284012022 cites W1524124868 @default.
- W2284012022 cites W1555308356 @default.
- W2284012022 cites W1555523342 @default.
- W2284012022 cites W1584561919 @default.
- W2284012022 cites W1599145046 @default.
- W2284012022 cites W1610400934 @default.
- W2284012022 cites W1620925053 @default.
- W2284012022 cites W1635217844 @default.
- W2284012022 cites W1642629289 @default.
- W2284012022 cites W1645355309 @default.
- W2284012022 cites W1652760364 @default.
- W2284012022 cites W1657002161 @default.
- W2284012022 cites W1667903328 @default.
- W2284012022 cites W1776426072 @default.
- W2284012022 cites W1836869529 @default.
- W2284012022 cites W1970683996 @default.
- W2284012022 cites W1972978647 @default.
- W2284012022 cites W1973287519 @default.
- W2284012022 cites W1974672600 @default.
- W2284012022 cites W1974999698 @default.
- W2284012022 cites W1975628350 @default.
- W2284012022 cites W1982302114 @default.
- W2284012022 cites W1994630888 @default.
- W2284012022 cites W2005567558 @default.
- W2284012022 cites W2006149257 @default.
- W2284012022 cites W2006823362 @default.
- W2284012022 cites W2011929815 @default.
- W2284012022 cites W2013837170 @default.
- W2284012022 cites W2014750094 @default.
- W2284012022 cites W2015038153 @default.
- W2284012022 cites W2018752510 @default.
- W2284012022 cites W2029618446 @default.
- W2284012022 cites W2039343706 @default.
- W2284012022 cites W2040104647 @default.
- W2284012022 cites W2045617004 @default.
- W2284012022 cites W2048309550 @default.
- W2284012022 cites W2050210559 @default.
- W2284012022 cites W2050683548 @default.
- W2284012022 cites W2058199022 @default.
- W2284012022 cites W2069246401 @default.
- W2284012022 cites W2070757732 @default.
- W2284012022 cites W2073909098 @default.
- W2284012022 cites W2091866864 @default.
- W2284012022 cites W2111592332 @default.
- W2284012022 cites W2117469337 @default.
- W2284012022 cites W2118461671 @default.
- W2284012022 cites W2129350934 @default.
- W2284012022 cites W2138714475 @default.
- W2284012022 cites W2139833895 @default.
- W2284012022 cites W2145777586 @default.
- W2284012022 cites W2165147313 @default.
- W2284012022 cites W2244071376 @default.
- W2284012022 cites W2481581286 @default.
- W2284012022 cites W2563248796 @default.
- W2284012022 cites W287140286 @default.
- W2284012022 cites W2914893328 @default.
- W2284012022 cites W2963567340 @default.
- W2284012022 cites W2997983412 @default.
- W2284012022 cites W3040586665 @default.
- W2284012022 cites W3100532919 @default.
- W2284012022 cites W3101530662 @default.
- W2284012022 cites W3102994489 @default.
- W2284012022 cites W32687198 @default.
- W2284012022 cites W87874594 @default.
- W2284012022 cites W2078770186 @default.
- W2284012022 hasPublicationYear "2014" @default.
- W2284012022 type Work @default.
- W2284012022 sameAs 2284012022 @default.
- W2284012022 citedByCount "0" @default.
- W2284012022 crossrefType "journal-article" @default.
- W2284012022 hasAuthorship W2284012022A5087751242 @default.
- W2284012022 hasConcept C104317684 @default.
- W2284012022 hasConcept C118615104 @default.
- W2284012022 hasConcept C136119220 @default.
- W2284012022 hasConcept C136170076 @default.
- W2284012022 hasConcept C165525559 @default.
- W2284012022 hasConcept C185592680 @default.
- W2284012022 hasConcept C202444582 @default.
- W2284012022 hasConcept C33923547 @default.
- W2284012022 hasConcept C55493867 @default.
- W2284012022 hasConcept C78606066 @default.
- W2284012022 hasConcept C96403706 @default.
- W2284012022 hasConceptScore W2284012022C104317684 @default.
- W2284012022 hasConceptScore W2284012022C118615104 @default.
- W2284012022 hasConceptScore W2284012022C136119220 @default.
- W2284012022 hasConceptScore W2284012022C136170076 @default.
- W2284012022 hasConceptScore W2284012022C165525559 @default.
- W2284012022 hasConceptScore W2284012022C185592680 @default.
- W2284012022 hasConceptScore W2284012022C202444582 @default.
- W2284012022 hasConceptScore W2284012022C33923547 @default.
- W2284012022 hasConceptScore W2284012022C55493867 @default.
- W2284012022 hasConceptScore W2284012022C78606066 @default.