Matches in SemOpenAlex for { <https://semopenalex.org/work/W2284146277> ?p ?o ?g. }
- W2284146277 endingPage "245.e7" @default.
- W2284146277 startingPage "245.e1" @default.
- W2284146277 abstract "Background Intrauterine growth restriction is a condition in which the fetus has a birthweight and/or length <10th percentile for the gestational age. Intrauterine growth restriction can be associated with various causes, among which is low uteroplacental perfusion and chronic hypoxia during gestation. Often, intrauterine growth-restricted fetuses have increased oxidative stress; therefore, agents that decrease oxidative stress and increase utero, placental, and umbilical perfusion have been proposed as a beneficial therapeutic strategy. In this scenario, melatonin acts as an umbilical vasodilator and a potent antioxidant that has not been evaluated in pregnancies under chronic hypoxia that induce fetal growth restriction. However, this neurohormone has been proposed as a pharmacologic therapy for complicated pregnancies. Objectives The aim of this study was to determine the effects of prenatal administration of melatonin during the last trimester of pregnancy on the biometry of the growth-restricted lambs because of developmental hypoxia. Further, we aimed to determine melatonin and cortisol levels and oxidative stress markers in plasma of pregnant ewes during the treatment. Study Design High-altitude pregnant sheep received either vehicle (n = 5; 5 mL 1.4% ethanol) or melatonin (n = 7; 10 mg/kg–1day–1 in 5 mL 1.4% ethanol) daily during the last one-third of gestation. Maternal plasma levels of melatonin, cortisol, antioxidant capacity, and oxidative stress were determined along treatment. At birth, neonates were examined, weighed, and measured (biparietal diameter, abdominal diameter, and crown-rump length). Results Antenatal treatment with melatonin markedly decreased neonatal biometry and weight at birth. Additionally, melatonin treatment increased the length of gestation by 7.5% and shifted the time of delivery. Furthermore, the prenatal treatment doubled plasma levels of melatonin and cortisol and significantly improved the antioxidant capacity of the pregnant ewes. Conclusions Our findings indicate that antenatal melatonin induces further intrauterine growth restriction but improves the maternal plasma antioxidant capacity. Additional studies should address the efficiency and safety of antenatal melatonin before clinical attempts on humans. Intrauterine growth restriction is a condition in which the fetus has a birthweight and/or length <10th percentile for the gestational age. Intrauterine growth restriction can be associated with various causes, among which is low uteroplacental perfusion and chronic hypoxia during gestation. Often, intrauterine growth-restricted fetuses have increased oxidative stress; therefore, agents that decrease oxidative stress and increase utero, placental, and umbilical perfusion have been proposed as a beneficial therapeutic strategy. In this scenario, melatonin acts as an umbilical vasodilator and a potent antioxidant that has not been evaluated in pregnancies under chronic hypoxia that induce fetal growth restriction. However, this neurohormone has been proposed as a pharmacologic therapy for complicated pregnancies. The aim of this study was to determine the effects of prenatal administration of melatonin during the last trimester of pregnancy on the biometry of the growth-restricted lambs because of developmental hypoxia. Further, we aimed to determine melatonin and cortisol levels and oxidative stress markers in plasma of pregnant ewes during the treatment. High-altitude pregnant sheep received either vehicle (n = 5; 5 mL 1.4% ethanol) or melatonin (n = 7; 10 mg/kg–1day–1 in 5 mL 1.4% ethanol) daily during the last one-third of gestation. Maternal plasma levels of melatonin, cortisol, antioxidant capacity, and oxidative stress were determined along treatment. At birth, neonates were examined, weighed, and measured (biparietal diameter, abdominal diameter, and crown-rump length). Antenatal treatment with melatonin markedly decreased neonatal biometry and weight at birth. Additionally, melatonin treatment increased the length of gestation by 7.5% and shifted the time of delivery. Furthermore, the prenatal treatment doubled plasma levels of melatonin and cortisol and significantly improved the antioxidant capacity of the pregnant ewes. Our findings indicate that antenatal melatonin induces further intrauterine growth restriction but improves the maternal plasma antioxidant capacity. Additional studies should address the efficiency and safety of antenatal melatonin before clinical attempts on humans." @default.
- W2284146277 created "2016-06-24" @default.
- W2284146277 creator A5010566384 @default.
- W2284146277 creator A5010763514 @default.
- W2284146277 creator A5035964277 @default.
- W2284146277 creator A5048665654 @default.
- W2284146277 creator A5052984135 @default.
- W2284146277 creator A5075737721 @default.
- W2284146277 creator A5078498546 @default.
- W2284146277 creator A5079153752 @default.
- W2284146277 creator A5090156858 @default.
- W2284146277 date "2016-08-01" @default.
- W2284146277 modified "2023-10-14" @default.
- W2284146277 title "Potential adverse effects of antenatal melatonin as a treatment for intrauterine growth restriction: findings in pregnant sheep" @default.
- W2284146277 cites W1485256456 @default.
- W2284146277 cites W1511863177 @default.
- W2284146277 cites W1570607043 @default.
- W2284146277 cites W1571196788 @default.
- W2284146277 cites W1877005293 @default.
- W2284146277 cites W1961541921 @default.
- W2284146277 cites W1970402165 @default.
- W2284146277 cites W1971627429 @default.
- W2284146277 cites W1974586776 @default.
- W2284146277 cites W1976059632 @default.
- W2284146277 cites W1977093123 @default.
- W2284146277 cites W1980732917 @default.
- W2284146277 cites W1981872374 @default.
- W2284146277 cites W1983912268 @default.
- W2284146277 cites W1993799175 @default.
- W2284146277 cites W1995098290 @default.
- W2284146277 cites W2003702559 @default.
- W2284146277 cites W2008894693 @default.
- W2284146277 cites W2021608780 @default.
- W2284146277 cites W2027029567 @default.
- W2284146277 cites W2032518276 @default.
- W2284146277 cites W2032784868 @default.
- W2284146277 cites W2033169754 @default.
- W2284146277 cites W2041778509 @default.
- W2284146277 cites W2046363623 @default.
- W2284146277 cites W2049069487 @default.
- W2284146277 cites W2055463001 @default.
- W2284146277 cites W2059881173 @default.
- W2284146277 cites W2063840332 @default.
- W2284146277 cites W2064993259 @default.
- W2284146277 cites W2068115007 @default.
- W2284146277 cites W2069848394 @default.
- W2284146277 cites W2070373935 @default.
- W2284146277 cites W2085397139 @default.
- W2284146277 cites W2093018079 @default.
- W2284146277 cites W2094536436 @default.
- W2284146277 cites W2094808002 @default.
- W2284146277 cites W2097320488 @default.
- W2284146277 cites W2099093610 @default.
- W2284146277 cites W2107928471 @default.
- W2284146277 cites W2112251999 @default.
- W2284146277 cites W2114256210 @default.
- W2284146277 cites W2119231800 @default.
- W2284146277 cites W2121074309 @default.
- W2284146277 cites W2122745596 @default.
- W2284146277 cites W2127494620 @default.
- W2284146277 cites W2131017300 @default.
- W2284146277 cites W2134110570 @default.
- W2284146277 cites W2136175035 @default.
- W2284146277 cites W2138677837 @default.
- W2284146277 cites W2142059781 @default.
- W2284146277 cites W2147261010 @default.
- W2284146277 cites W2156878791 @default.
- W2284146277 cites W2162878054 @default.
- W2284146277 cites W2163234825 @default.
- W2284146277 cites W2165292984 @default.
- W2284146277 cites W2165978475 @default.
- W2284146277 cites W2168035958 @default.
- W2284146277 cites W2172719193 @default.
- W2284146277 cites W2413421062 @default.
- W2284146277 cites W425981575 @default.
- W2284146277 doi "https://doi.org/10.1016/j.ajog.2016.02.040" @default.
- W2284146277 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26902986" @default.
- W2284146277 hasPublicationYear "2016" @default.
- W2284146277 type Work @default.
- W2284146277 sameAs 2284146277 @default.
- W2284146277 citedByCount "31" @default.
- W2284146277 countsByYear W22841462772017 @default.
- W2284146277 countsByYear W22841462772018 @default.
- W2284146277 countsByYear W22841462772019 @default.
- W2284146277 countsByYear W22841462772020 @default.
- W2284146277 countsByYear W22841462772021 @default.
- W2284146277 countsByYear W22841462772022 @default.
- W2284146277 countsByYear W22841462772023 @default.
- W2284146277 crossrefType "journal-article" @default.
- W2284146277 hasAuthorship W2284146277A5010566384 @default.
- W2284146277 hasAuthorship W2284146277A5010763514 @default.
- W2284146277 hasAuthorship W2284146277A5035964277 @default.
- W2284146277 hasAuthorship W2284146277A5048665654 @default.
- W2284146277 hasAuthorship W2284146277A5052984135 @default.
- W2284146277 hasAuthorship W2284146277A5075737721 @default.
- W2284146277 hasAuthorship W2284146277A5078498546 @default.
- W2284146277 hasAuthorship W2284146277A5079153752 @default.
- W2284146277 hasAuthorship W2284146277A5090156858 @default.