Matches in SemOpenAlex for { <https://semopenalex.org/work/W2284217336> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2284217336 endingPage "312" @default.
- W2284217336 startingPage "295" @default.
- W2284217336 abstract "ABSTRACT Traffic congestion can largely be attributed to the issues related with driving behavior, which may cause vehicle crash, stop-and-go traffic due to frequent lane changing behaviors, etc., and makes the driving behavior research also of significance in the realm of traffic management and demand management. The emergence and subsequent rapid advances with new information and communication technologies (ICT) now offers the capability of collecting high-fidelity and highresolution trajectory data in a cost-effective manner. In this research, we use a smartphone app to collect data for the purpose of studying driving risk factors. What’s unique about the data in this research is its backend server also estimates traffic speed and volume for each link that the vehicle traverses. In order words, the data collected with build-in GPS modules in the smartphone include not only the vehicle spatial-temporal dimension location, which could be used to correlate the network geography attributes and/or real-time traffic condition, but also the detailed information about the vehicle dynamics including speed, acceleration, and deceleration, whereby a driver’s control and maneuver of a vehicle can be analyzed in detail. Such type of dataset combining both user trajectory and link speed/volume information is rarely seen in prior research, permitting a unique opportunity to link critical traffic congestion factors leading to driving behavior and crash potential. In this paper, the overall research framework used in this research is presented, which mainly includes data collection, data processing, calibration and analysis methodology. A preliminary case study — including data summary statistics and correlation analysis — is also presented. The results of our study will further existing knowledge about driving exposure factors that are closely linked to crash risk, and provide the foundation for advanced forms of Usage Based Insurance." @default.
- W2284217336 created "2016-06-24" @default.
- W2284217336 creator A5029519486 @default.
- W2284217336 creator A5064426133 @default.
- W2284217336 creator A5066109853 @default.
- W2284217336 creator A5074171950 @default.
- W2284217336 date "2015-09-01" @default.
- W2284217336 modified "2023-09-27" @default.
- W2284217336 title "Studying Driving Risk Factors using Multi-Source Mobile Computing Data" @default.
- W2284217336 cites W1964023669 @default.
- W2284217336 cites W1965945321 @default.
- W2284217336 cites W1998328025 @default.
- W2284217336 cites W2011514693 @default.
- W2284217336 cites W2016937228 @default.
- W2284217336 cites W2034179702 @default.
- W2284217336 cites W2034768418 @default.
- W2284217336 cites W2047150210 @default.
- W2284217336 cites W2069945260 @default.
- W2284217336 cites W2085219741 @default.
- W2284217336 cites W2088054590 @default.
- W2284217336 cites W2122596006 @default.
- W2284217336 cites W2175760306 @default.
- W2284217336 cites W4250868449 @default.
- W2284217336 doi "https://doi.org/10.1260/2046-0430.4.3.295" @default.
- W2284217336 hasPublicationYear "2015" @default.
- W2284217336 type Work @default.
- W2284217336 sameAs 2284217336 @default.
- W2284217336 citedByCount "25" @default.
- W2284217336 countsByYear W22842173362017 @default.
- W2284217336 countsByYear W22842173362018 @default.
- W2284217336 countsByYear W22842173362019 @default.
- W2284217336 countsByYear W22842173362020 @default.
- W2284217336 countsByYear W22842173362021 @default.
- W2284217336 countsByYear W22842173362022 @default.
- W2284217336 countsByYear W22842173362023 @default.
- W2284217336 crossrefType "journal-article" @default.
- W2284217336 hasAuthorship W2284217336A5029519486 @default.
- W2284217336 hasAuthorship W2284217336A5064426133 @default.
- W2284217336 hasAuthorship W2284217336A5066109853 @default.
- W2284217336 hasAuthorship W2284217336A5074171950 @default.
- W2284217336 hasBestOaLocation W22842173361 @default.
- W2284217336 hasConcept C127413603 @default.
- W2284217336 hasConcept C144133560 @default.
- W2284217336 hasConcept C22212356 @default.
- W2284217336 hasConcept C41008148 @default.
- W2284217336 hasConceptScore W2284217336C127413603 @default.
- W2284217336 hasConceptScore W2284217336C144133560 @default.
- W2284217336 hasConceptScore W2284217336C22212356 @default.
- W2284217336 hasConceptScore W2284217336C41008148 @default.
- W2284217336 hasIssue "3" @default.
- W2284217336 hasLocation W22842173361 @default.
- W2284217336 hasOpenAccess W2284217336 @default.
- W2284217336 hasPrimaryLocation W22842173361 @default.
- W2284217336 hasRelatedWork W2093578348 @default.
- W2284217336 hasRelatedWork W2350741829 @default.
- W2284217336 hasRelatedWork W2358668433 @default.
- W2284217336 hasRelatedWork W2376932109 @default.
- W2284217336 hasRelatedWork W2382290278 @default.
- W2284217336 hasRelatedWork W2390279801 @default.
- W2284217336 hasRelatedWork W2748952813 @default.
- W2284217336 hasRelatedWork W2766271392 @default.
- W2284217336 hasRelatedWork W2899084033 @default.
- W2284217336 hasRelatedWork W3004735627 @default.
- W2284217336 hasVolume "4" @default.
- W2284217336 isParatext "false" @default.
- W2284217336 isRetracted "false" @default.
- W2284217336 magId "2284217336" @default.
- W2284217336 workType "article" @default.