Matches in SemOpenAlex for { <https://semopenalex.org/work/W2284245616> ?p ?o ?g. }
- W2284245616 endingPage "255" @default.
- W2284245616 startingPage "245" @default.
- W2284245616 abstract "Thermoacoustics has the potential to provide quantitative images of intrinsic tissue properties, most notably electrical conductivity in Siemens/meter, much as shear wave elastography provides tissue stiffness in kilopascal. Although thermoacoustic imaging with optical excitation has been commercialized for small animals, it has not yet made the transition to clinic for whole organ imaging in humans. The purpose of this work was to develop and validate specifications for a clinical ultrasound array for quantitative whole organ thermoacoustic imaging. Imaging a large organ requires exciting thermoacoustic pulses throughout the volume and broadband detection of those pulses because tomographic image reconstruction preserves frequency content. Applying the half-wavelength limit to a <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex-math notation=LaTeX>$200 text{-}upmu text{m}$</tex-math></inline-formula> inclusion inside a 7.5-cm diameter organ requires measurement sensitivity to frequencies ranging from 4 MHz to 10 kHz, respectively. A dual-transducer system utilizing a P4-1 array connected to a Verasonics V1 system as well as a focused single-element transducer sensitive to lower frequencies was developed. Very high-frequency (VHF) irradiation generated thermoacoustic pulses throughout a <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex-math notation=LaTeX>$6 times 6 times 5 text{cm}^{3}$</tex-math></inline-formula> volume. In the VHF regime, electrical conductivity drives thermoacoustic signal production. Simultaneous acquisition of thermoacoustic pulses by both transducers enabled comparison of transducer performance. Data from the clinical array generated a stack of 96 images with a separation of 0.3 mm, whereas the single-element transducer imaged only in a single plane. In-plane resolution and quantitative accuracy were quantified at isocenter. The array provided volumetric imaging capability with superior resolution whereas the single-element transducer provided superior quantitative accuracy in axial images. Combining axial images from both transducers preserved resolution of the P4-1 array and improved image contrast. Neither transducer was sensitive to frequencies below 50 kHz, resulting in a dc offset and low-frequency shading over fields of view exceeding 15 mm. Fresh human prostates were imaged <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>ex vivo</i> and volumetric reconstructions reveal structures rarely seen in diagnostic images. In conclusion, quantitative whole-organ thermoacoustic tomography will be feasible by sparsely interspersing transducer elements sensitive to the low end of the ultrasonic range." @default.
- W2284245616 created "2016-06-24" @default.
- W2284245616 creator A5033934990 @default.
- W2284245616 creator A5049853015 @default.
- W2284245616 creator A5055216359 @default.
- W2284245616 creator A5067967023 @default.
- W2284245616 date "2016-02-01" @default.
- W2284245616 modified "2023-10-02" @default.
- W2284245616 title "Toward Quantitative Whole Organ Thermoacoustics With a Clinical Array Plus One Very Low-Frequency Channel Applied to Prostate Cancer Imaging" @default.
- W2284245616 cites W1511013251 @default.
- W2284245616 cites W1985913862 @default.
- W2284245616 cites W1987935751 @default.
- W2284245616 cites W1994815835 @default.
- W2284245616 cites W1994907190 @default.
- W2284245616 cites W2000253174 @default.
- W2284245616 cites W2002393818 @default.
- W2284245616 cites W2015507106 @default.
- W2284245616 cites W2018355588 @default.
- W2284245616 cites W2026616100 @default.
- W2284245616 cites W2028379995 @default.
- W2284245616 cites W2030959745 @default.
- W2284245616 cites W2037497879 @default.
- W2284245616 cites W2044727061 @default.
- W2284245616 cites W2050270600 @default.
- W2284245616 cites W2050412575 @default.
- W2284245616 cites W2051347774 @default.
- W2284245616 cites W2052142948 @default.
- W2284245616 cites W2057588524 @default.
- W2284245616 cites W2058871194 @default.
- W2284245616 cites W2059906541 @default.
- W2284245616 cites W2069472142 @default.
- W2284245616 cites W2069530769 @default.
- W2284245616 cites W2092513871 @default.
- W2284245616 cites W2097079258 @default.
- W2284245616 cites W2104220837 @default.
- W2284245616 cites W2131357718 @default.
- W2284245616 cites W2147708754 @default.
- W2284245616 cites W2148309086 @default.
- W2284245616 cites W2149542824 @default.
- W2284245616 cites W2162473564 @default.
- W2284245616 cites W2167743786 @default.
- W2284245616 cites W2315866755 @default.
- W2284245616 cites W3105764285 @default.
- W2284245616 cites W94605607 @default.
- W2284245616 doi "https://doi.org/10.1109/tuffc.2015.2513018" @default.
- W2284245616 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4786189" @default.
- W2284245616 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26731749" @default.
- W2284245616 hasPublicationYear "2016" @default.
- W2284245616 type Work @default.
- W2284245616 sameAs 2284245616 @default.
- W2284245616 citedByCount "36" @default.
- W2284245616 countsByYear W22842456162016 @default.
- W2284245616 countsByYear W22842456162017 @default.
- W2284245616 countsByYear W22842456162018 @default.
- W2284245616 countsByYear W22842456162019 @default.
- W2284245616 countsByYear W22842456162020 @default.
- W2284245616 countsByYear W22842456162021 @default.
- W2284245616 countsByYear W22842456162022 @default.
- W2284245616 countsByYear W22842456162023 @default.
- W2284245616 crossrefType "journal-article" @default.
- W2284245616 hasAuthorship W2284245616A5033934990 @default.
- W2284245616 hasAuthorship W2284245616A5049853015 @default.
- W2284245616 hasAuthorship W2284245616A5055216359 @default.
- W2284245616 hasAuthorship W2284245616A5067967023 @default.
- W2284245616 hasBestOaLocation W22842456162 @default.
- W2284245616 hasConcept C111919701 @default.
- W2284245616 hasConcept C121332964 @default.
- W2284245616 hasConcept C121608353 @default.
- W2284245616 hasConcept C126322002 @default.
- W2284245616 hasConcept C137820387 @default.
- W2284245616 hasConcept C163985040 @default.
- W2284245616 hasConcept C24890656 @default.
- W2284245616 hasConcept C2777432617 @default.
- W2284245616 hasConcept C2780472235 @default.
- W2284245616 hasConcept C41008148 @default.
- W2284245616 hasConcept C530470458 @default.
- W2284245616 hasConcept C56318395 @default.
- W2284245616 hasConcept C71924100 @default.
- W2284245616 hasConcept C81288441 @default.
- W2284245616 hasConceptScore W2284245616C111919701 @default.
- W2284245616 hasConceptScore W2284245616C121332964 @default.
- W2284245616 hasConceptScore W2284245616C121608353 @default.
- W2284245616 hasConceptScore W2284245616C126322002 @default.
- W2284245616 hasConceptScore W2284245616C137820387 @default.
- W2284245616 hasConceptScore W2284245616C163985040 @default.
- W2284245616 hasConceptScore W2284245616C24890656 @default.
- W2284245616 hasConceptScore W2284245616C2777432617 @default.
- W2284245616 hasConceptScore W2284245616C2780472235 @default.
- W2284245616 hasConceptScore W2284245616C41008148 @default.
- W2284245616 hasConceptScore W2284245616C530470458 @default.
- W2284245616 hasConceptScore W2284245616C56318395 @default.
- W2284245616 hasConceptScore W2284245616C71924100 @default.
- W2284245616 hasConceptScore W2284245616C81288441 @default.
- W2284245616 hasFunder F4320332161 @default.
- W2284245616 hasIssue "2" @default.
- W2284245616 hasLocation W22842456161 @default.
- W2284245616 hasLocation W22842456162 @default.
- W2284245616 hasLocation W22842456163 @default.