Matches in SemOpenAlex for { <https://semopenalex.org/work/W2284660070> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2284660070 abstract "If we are to enact better policy, fight crime anddecrease poverty, we will need better computational models of howsociety works. In order to make computational social science auseful reality, we will need generative models of how socialinfluence sprouts at the interpersonal level and how it leads toemergent social behavior. In this thesis, I take steps atunderstanding the predictors and conduits of social influence byanalyzing real-life data, and I use the findings to create ahigh-accuracy prediction model of individuals' future behavior. Thefunf dataset which comprises detailed high-frequency data gatheredfrom 25 mobile phone-based signals from 130 people over a period of15 months, will be used to test the hypothesis that people whointeract more with each other have a greater ability to influenceeach other. Various metrics of interaction will be investigatedsuch as self-reported friendships, call and SMS logs and Bluetoothco-location signals. The Burt Network Constraint of each pair ofparticipants is calculated as a measure of not only the directinteraction between two participants but also the indirectfriendships through intermediate neighbors that form closed triadswith both the participants being assessed. To measure influence,the results of the live funf intervention will be used wherebehavior change of each participant to be more physically activewas rewarded, with the reward being calculated live. There werethree variants of the reward structure: one where each participantwas rewarded for her own behavior change without seeing that ofanybody else (the control), one where each participant was pairedup with two 'buddies' whose behavior change she could see live butshe was still rewarded based on her own behavior, and one whereeach participant who was paired with two others was paid based ontheir behavior change that she could see live. As a metric forsocial influence, it will be considered how the change in slope andaverage physical activity levels of one person follows the changein slope and average physical activity levels of the buddy who sawher data and/or was rewarded based on her performance. Finally, alinear regression model that uses the various types of directionand indirect network interactions will be created to predict thebehavior change of one participant based on her closeness with herbuddy. In addition to explaining and demonstrating the causes ofsocial influence with unprecedented detail using network analysisand machine learning, I will discuss the larger topic of using sucha technology-driven approach to changing behavior instead of thetraditional policy-driven approach. The advantages of thetechnology-driven approach will be highlighted and the potentialpolitical-economic pitfalls of implementing such a novel approachwill also be addressed. Since technology-driven approaches tochanging individual behavior can have serious negative consequencesfor democracy and the free-market, I will introduce a noveldimension to the discussion of how to protect…" @default.
- W2284660070 created "2016-06-24" @default.
- W2284660070 creator A5022017615 @default.
- W2284660070 date "2013-01-01" @default.
- W2284660070 modified "2023-09-28" @default.
- W2284660070 title "Understanding social influence using network analysis and machine learning" @default.
- W2284660070 cites W2003775523 @default.
- W2284660070 cites W2004055607 @default.
- W2284660070 cites W2073415692 @default.
- W2284660070 cites W2089129061 @default.
- W2284660070 cites W2112596883 @default.
- W2284660070 cites W2125349172 @default.
- W2284660070 cites W2130354913 @default.
- W2284660070 cites W2905455284 @default.
- W2284660070 cites W594646586 @default.
- W2284660070 hasPublicationYear "2013" @default.
- W2284660070 type Work @default.
- W2284660070 sameAs 2284660070 @default.
- W2284660070 citedByCount "0" @default.
- W2284660070 crossrefType "dissertation" @default.
- W2284660070 hasAuthorship W2284660070A5022017615 @default.
- W2284660070 hasConcept C126349790 @default.
- W2284660070 hasConcept C130064352 @default.
- W2284660070 hasConcept C136764020 @default.
- W2284660070 hasConcept C154945302 @default.
- W2284660070 hasConcept C15744967 @default.
- W2284660070 hasConcept C180747234 @default.
- W2284660070 hasConcept C2522767166 @default.
- W2284660070 hasConcept C2777421447 @default.
- W2284660070 hasConcept C41008148 @default.
- W2284660070 hasConcept C4727928 @default.
- W2284660070 hasConcept C518677369 @default.
- W2284660070 hasConcept C546215728 @default.
- W2284660070 hasConcept C555944384 @default.
- W2284660070 hasConcept C76155785 @default.
- W2284660070 hasConcept C77805123 @default.
- W2284660070 hasConceptScore W2284660070C126349790 @default.
- W2284660070 hasConceptScore W2284660070C130064352 @default.
- W2284660070 hasConceptScore W2284660070C136764020 @default.
- W2284660070 hasConceptScore W2284660070C154945302 @default.
- W2284660070 hasConceptScore W2284660070C15744967 @default.
- W2284660070 hasConceptScore W2284660070C180747234 @default.
- W2284660070 hasConceptScore W2284660070C2522767166 @default.
- W2284660070 hasConceptScore W2284660070C2777421447 @default.
- W2284660070 hasConceptScore W2284660070C41008148 @default.
- W2284660070 hasConceptScore W2284660070C4727928 @default.
- W2284660070 hasConceptScore W2284660070C518677369 @default.
- W2284660070 hasConceptScore W2284660070C546215728 @default.
- W2284660070 hasConceptScore W2284660070C555944384 @default.
- W2284660070 hasConceptScore W2284660070C76155785 @default.
- W2284660070 hasConceptScore W2284660070C77805123 @default.
- W2284660070 hasLocation W22846600701 @default.
- W2284660070 hasOpenAccess W2284660070 @default.
- W2284660070 hasPrimaryLocation W22846600701 @default.
- W2284660070 hasRelatedWork W1486445859 @default.
- W2284660070 hasRelatedWork W1523831258 @default.
- W2284660070 hasRelatedWork W1567204456 @default.
- W2284660070 hasRelatedWork W1586466971 @default.
- W2284660070 hasRelatedWork W1766768042 @default.
- W2284660070 hasRelatedWork W1968195242 @default.
- W2284660070 hasRelatedWork W2052213327 @default.
- W2284660070 hasRelatedWork W2063631621 @default.
- W2284660070 hasRelatedWork W2119947339 @default.
- W2284660070 hasRelatedWork W2394506783 @default.
- W2284660070 hasRelatedWork W2598531005 @default.
- W2284660070 hasRelatedWork W2730746326 @default.
- W2284660070 hasRelatedWork W2815333482 @default.
- W2284660070 hasRelatedWork W2921483199 @default.
- W2284660070 hasRelatedWork W3121181142 @default.
- W2284660070 hasRelatedWork W3171275685 @default.
- W2284660070 hasRelatedWork W3173197279 @default.
- W2284660070 hasRelatedWork W3194933758 @default.
- W2284660070 hasRelatedWork W408633108 @default.
- W2284660070 hasRelatedWork W4451468 @default.
- W2284660070 isParatext "false" @default.
- W2284660070 isRetracted "false" @default.
- W2284660070 magId "2284660070" @default.
- W2284660070 workType "dissertation" @default.