Matches in SemOpenAlex for { <https://semopenalex.org/work/W2284832101> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2284832101 abstract "The Mechanistic Empirical Pavement Design Guide (MEPDG) is expected to be adopted by most transportation agencies and pavement engineers in the next few years. As a part of mechanistic-empirical pavement design procedure, it is required to locally calibrate distresses to match up analysis results with local measured data. However, it has been a challenging task for pavement practitioners and experts to calibrate distress models inherited in the design procedure due to the way the M-E design tool is processing the data. The literature review showed that the vast majority of calibration techniques currently in use are solely based on statistical analysis and trial and error approach for different combination of local calibration coefficients to find the best set that produces results closer enough to observed data in the field. This approach lack accuracy due to limited trials that can be evaluated and the absence of mathematical algorithm to guide the trial selection at the start of each MEPDG analysis cycle to find the optimum set of calibration coefficients. This study will investigate the possibility of using genetic algorithm (GA) to calibrate MEPDG distresses. Framework of calibration system will be designed to simulate the MEPDG calibration process within the genetic algorithm context. Site specific data from different locations will be used as inputs to MEPDG and initial calibration coefficient seeds will be presented to the system to produce initial distress output and compared to measured field data. The genetic algorithm will then be employed to guide the selection of new calibration set each time analysis cycle is performed and crossover and mutation processes will be used to produce new sets of chromosomes and presented to the calibration system for new evaluation cycle in an automated process to overcome drawbacks of the traditional trial and error approach. Calibration framework design and development will be discussed in this study along with results and advantages of using the genetic algorithm approach over traditional ones." @default.
- W2284832101 created "2016-06-24" @default.
- W2284832101 creator A5040512243 @default.
- W2284832101 creator A5041177438 @default.
- W2284832101 date "2015-01-01" @default.
- W2284832101 modified "2023-09-28" @default.
- W2284832101 title "Local Calibration for Mechanistic-Empirical Design Using Genetic Algorithm" @default.
- W2284832101 hasPublicationYear "2015" @default.
- W2284832101 type Work @default.
- W2284832101 sameAs 2284832101 @default.
- W2284832101 citedByCount "0" @default.
- W2284832101 crossrefType "journal-article" @default.
- W2284832101 hasAuthorship W2284832101A5040512243 @default.
- W2284832101 hasAuthorship W2284832101A5041177438 @default.
- W2284832101 hasConcept C105795698 @default.
- W2284832101 hasConcept C111919701 @default.
- W2284832101 hasConcept C11413529 @default.
- W2284832101 hasConcept C119857082 @default.
- W2284832101 hasConcept C124101348 @default.
- W2284832101 hasConcept C127413603 @default.
- W2284832101 hasConcept C151730666 @default.
- W2284832101 hasConcept C154945302 @default.
- W2284832101 hasConcept C165838908 @default.
- W2284832101 hasConcept C177264268 @default.
- W2284832101 hasConcept C199360897 @default.
- W2284832101 hasConcept C202444582 @default.
- W2284832101 hasConcept C2779343474 @default.
- W2284832101 hasConcept C33923547 @default.
- W2284832101 hasConcept C41008148 @default.
- W2284832101 hasConcept C58489278 @default.
- W2284832101 hasConcept C81917197 @default.
- W2284832101 hasConcept C86803240 @default.
- W2284832101 hasConcept C8880873 @default.
- W2284832101 hasConcept C9652623 @default.
- W2284832101 hasConcept C98045186 @default.
- W2284832101 hasConceptScore W2284832101C105795698 @default.
- W2284832101 hasConceptScore W2284832101C111919701 @default.
- W2284832101 hasConceptScore W2284832101C11413529 @default.
- W2284832101 hasConceptScore W2284832101C119857082 @default.
- W2284832101 hasConceptScore W2284832101C124101348 @default.
- W2284832101 hasConceptScore W2284832101C127413603 @default.
- W2284832101 hasConceptScore W2284832101C151730666 @default.
- W2284832101 hasConceptScore W2284832101C154945302 @default.
- W2284832101 hasConceptScore W2284832101C165838908 @default.
- W2284832101 hasConceptScore W2284832101C177264268 @default.
- W2284832101 hasConceptScore W2284832101C199360897 @default.
- W2284832101 hasConceptScore W2284832101C202444582 @default.
- W2284832101 hasConceptScore W2284832101C2779343474 @default.
- W2284832101 hasConceptScore W2284832101C33923547 @default.
- W2284832101 hasConceptScore W2284832101C41008148 @default.
- W2284832101 hasConceptScore W2284832101C58489278 @default.
- W2284832101 hasConceptScore W2284832101C81917197 @default.
- W2284832101 hasConceptScore W2284832101C86803240 @default.
- W2284832101 hasConceptScore W2284832101C8880873 @default.
- W2284832101 hasConceptScore W2284832101C9652623 @default.
- W2284832101 hasConceptScore W2284832101C98045186 @default.
- W2284832101 hasLocation W22848321011 @default.
- W2284832101 hasOpenAccess W2284832101 @default.
- W2284832101 hasPrimaryLocation W22848321011 @default.
- W2284832101 hasRelatedWork W1903708772 @default.
- W2284832101 hasRelatedWork W1967075559 @default.
- W2284832101 hasRelatedWork W1980104525 @default.
- W2284832101 hasRelatedWork W1998819982 @default.
- W2284832101 hasRelatedWork W2046087454 @default.
- W2284832101 hasRelatedWork W2057424849 @default.
- W2284832101 hasRelatedWork W2061077290 @default.
- W2284832101 hasRelatedWork W2068899819 @default.
- W2284832101 hasRelatedWork W2278824585 @default.
- W2284832101 hasRelatedWork W2285541343 @default.
- W2284832101 hasRelatedWork W2564919744 @default.
- W2284832101 hasRelatedWork W2597341320 @default.
- W2284832101 hasRelatedWork W27174562 @default.
- W2284832101 hasRelatedWork W574949808 @default.
- W2284832101 hasRelatedWork W587434789 @default.
- W2284832101 hasRelatedWork W596577719 @default.
- W2284832101 hasRelatedWork W609077133 @default.
- W2284832101 hasRelatedWork W616094083 @default.
- W2284832101 hasRelatedWork W618944506 @default.
- W2284832101 hasRelatedWork W2189045333 @default.
- W2284832101 isParatext "false" @default.
- W2284832101 isRetracted "false" @default.
- W2284832101 magId "2284832101" @default.
- W2284832101 workType "article" @default.